

SITE ASSESSMENT REPORT

SPOKANE INTERNATIONAL AIRPORT

Spokane, WA Facility Site ID: 6332493; Cleanup Site ID: 16774

Prepared for:

SPOKANE INTERNATIONAL AIRPORT 9000 W. Airport Drive, Suite 204 Spokane, Washington 99224

Prepared by: GSI ENVIRONMENTAL INC. 1115 West Bay Drive NW, Ste. 202 Olympia, WA 98502 www.gsienv.com

Job No.: 6892 Issued: 13 August 2024

SITE ASSESSMENT REPORT

Spokane International Airport Spokane, WA

TABLE OF CONTENTS

1.0	INT	RODUCTION1
2.0	AIR	PORT DESCRIPTION1
	2.1	Current Operations2
	2.2	Site History2
	2.3	Current and Historical Land Use4
	2.4	Geology and Hydrogeology6
		2.4.1 Regional Geology and Hydrogeology
		2.4.2 Site-Specific Geology and Hydrogeology
		2.4.3 Topography and Land Cover7
	2.5	Groundwater7
	2.6	Surface Water
3.0		CORDS REVIEW
		Interviews of Site Personnel8
	3.2	Incident Record Review9
	3.3	Site Environmental Record Review (ERIS)9
		Data Gaps9
4.0	HIS	TORICAL AND CURRENT FIRE EMERGENCY RESPONSE SYSTEM10
	4.1	Fire Fighting Foam Background Information10
		4.1.1 Historical Foam System Transitions
	4.2	Fire Suppression System Information12
		4.2.1 Fixed Foam Systems12
		4.2.2 Mobile Foam Systems
		4.2.3 Fire Training Information
		4.2.4 Required Foam Testing and Calibration Events14
		4.2.5 Local Firefighting Networks
		Potential and Known Use of Firefighting Foam15
5.0		STE STREAMS16
	5.1	Stormwater
	5.2	Wastewater
		Solid Waste
6.0		HER POTENTIAL SOURCES OF PFAS18
		On-Property Third Party Leased Facilities
	6.2	Potential or Known PFAS Sources Adjacent to SIA19
		6.2.1 Investigations or Confirmed PFAS Contamination Near the Site
7.0	HIS	TORICAL ONSITE PFAS DATA21

SITE ASSESSMENT REPORT Spokane International Airport

Spokane, WA

TABLE OF CONTENTS

8.0	AR	EAS OF POTENTIAL OR KNOWN CONCERN	23
9.0	RE	GULATORY FRAMEWORK AND PRELIMINARY CONCEPTUAL SITE MODEL	24
	9.1	Potential Contaminant Sources, Exposure Pathways and Receptors	25
		9.1.1 Human Health Receptors	25
		9.1.2 Ecological Receptors	26
10.0) SU	IMMARY AND CONCLUSION	27
11.0) RE	FERENCES	28

EXHIBITS

Exhibit 2.1 SIA Ownership & Historical Operations	4
Exhibit 3.1 Summary of Records Reviewed	
Exhibit 4.1 Types of Foam Used Over Time at SIA	
Exhibit 4.2 Foam Storage Locations	
Exhibit 5.1 Stormwater Management	
Exhibit 6.1 Map of 2024 monitoring area for Fairchild AFB	20
Exhibit 6.2 Stormwater Flow Path from Fairchild AFB Toward SIA	21
Exhibit 7.1 Analyte Certification Status for Historical Data:	22
Exhibit 7.2 Previous On-Property PFAS Results	23
Exhibit 8.1 Potential or Known PFAS Areas of Concern - Summary	24

TABLES

Table 1.1 Table 2.1 Table 4.1 Table 6.1	Enforcement Order Task 1A Requiremets Listing of Parcels that Comprise SIA Property Summary of Potential or Known Firefighting Foam Usage Areas Potential On- and Offsite Third-Party Sources of PFAS
FIGURES	
Figure 2.1 Figure 2.2 Figure 2.3	Site Location Map Current Site Operations Map Historical Aerial Imagery of the Site
Figure 2.4	Surface Water Features of the Site

Figure 4.1 Locations of Potential or Known Usage of Firefighting Foam

Figure 5.1 Stormwater Pollution Prevention Plan – Vicinity and Facility Map

- Figure 5.2 Historical Landfills and Solid Waste Facilities
- Figure 6.1 Potential Third-Party PFAS Sources
- Figure 7.1 Historical Groundwater Results for PFAS
- Figure 8.1 Potential or Known PFAS Areas of Concern

APPENDICES

Appendix A.	Geology & Hydrogeology	
A	Listaniaal Dananta	

- Appendix B. Historical Reports
- Appendix C. Response to Comments Received from Ecology on Draft Site Assessment Report

SITE ASSESSMENT REPORT Spokane International Airport Spokane, WA

LIST OF ABBREVIATIONS

ADF	aircraft deicing fluid
AFB	Airforce Base
AFFF	aqueous film-forming foam
Amsl	above mean sea level
AOA	Air Operations Area
ARFF	Airport Rescue and Fire Fighting
bgs	below ground surface
BMPs	best management practices
CFR	Code of Federal Regulations
COO	Chief Operating Officer
CRBG	Columbia River Basalt Group
DoD	Department of Defense
Ecology	Washington State Department of Ecology
EO	Enforcement order
ERIS	Environmental Risk Information Services
FAA	Federal Aviation Administration
FWS	United States Fish and Wildlife Service
GRV	glycol recovery vehicle
GSI	GSI Environmental Inc.
HFPO-DA	hexafluoropropylene oxide-dimer acid
IAC	International Aerospace Coatings
ITRC	Interstate Technology and Regulatory Council
MCL	maximum contaminant level
MTCA	Model Toxics Control Act
NTSB	National Transportation Safety Board
PFAS	per- and polyfluoroalkyl substances
PFAS CAP	Per- and Polyfluoroalkyl Substances Chemical Action Plan
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoDA	perfluorododecanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid

SITE ASSESSMENT REPORT Spokane International Airport Spokane, WA

LIST OF ABBREVIATIONS

PFODA	perfluorooctadecanoic acid
PFOS	perfluorooctane sulfonic acid
PFPeA	perfluoropentanoic acid
PFPrA	perfluoropropanoic acid
PFTetA	perfluorotetradecanoic acid
PFUDA	perfluoroundecanoic acid
POTW	Publicly owned Treatment Works
PWS	public water systems
SDWA	Safe Water Drinking Act
SIA	Spokane International Airport
SMaRT	Spokane Material and Recycling Technology
SRVP	Spokane Valley-Rathdrum Prairie Aquifer
SWGE	Synoptic well gauging event
UCMR	Fifth Unregulated Contaminant Monitoring Rule
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
WA DoH	Washington State Department of Health

1.0 INTRODUCTION

GSI Environmental Inc. (GSI) prepared this Site Assessment Report on behalf of Spokane International Airport (SIA), also known by its International Air Transport Association code, GEG. The report addresses requirements detailed in Task 1A (Site Assessment Report for PFAS) of Enforcement Order No. DE22584 (the EO) as issued by the Washington State Department of Ecology (Ecology) on 29 March 2024. This report is meant as a preliminary review of information gathered to date and will serve to support additional work to be conducted in the Preliminary PFAS Investigation (Task 1B of the EO) and as part of the Remedial Investigation. The initial information and findings stated in this report may be subject to change following additional data collection and analyses conducted as part of the EO investigations. Table 1.1 states the required elements as outlined in the EO for the Site Assessment Report and the corresponding sections within this report. In addition, general background on environmental conditions at the site including the environmental setting and hydrogeology are provided.

The focus of this Site Assessment report is to provide preliminary information gathered to date regarding the potential and known usage of agueous film-forming foams (AFFF) at SIA that contain per-and polyfluoroalkyl substances (PFAS) with an objective, "to identify potential source areas for further investigation and guide the collection and interpretation of soil and groundwater analytical data", as stated in the EO. The airport's usage of AFFF containing PFAS relates directly to the airport's compliance with federal regulations. Recognizing these federal mandates is important for understanding AFFF usage on airport property, including past military operations at the airport. The Federal Aviation Administration (FAA) requires airports certificated pursuant to 14 CFR Part 139, like SIA, to use AFFF that meets certain federally mandated standards, including those established by the Department of Defense since at least the late 1960s. Through its advisory circulars and separate published guidance called "CertAlerts," airports are provided the guidance needed to maintain their Part 139 certification which includes specification on the type of firefighting foam to use, amount of AFFF required on site, and testing protocols (see Section 4.1). Only in 2023 has a fluorine-free foam become an option and the transition to fluorine-free foam at Part 139 airports is likely to occur over the next several years. The new fluorine-free foams are not drop-in replacements for AFFF, as they may require modifications to equipment for application and discharge, cannot be mixed with AFFF products, and require new extensive training for firefighting personnel. The FAA and DoD are actively working on guidance for the proper and effective transition.

With this background and experience at other military and civilian airports, GSI conducted a review of documents, including publicly available sources and environmental and facility reports provided by SIA all with the goal of understanding AFFF usage at SIA under its FAA mandate. GSI staff also interviewed individuals from SIA with working knowledge of the SIA fire department and operations. This report serves as a compilation of SIA specific information, obtained to date, pertaining to the history and use of AFFF across the airport area. The report also identifies potential sources of PFAS that are not associated with airport operations. The findings from the historical and operational review, the interviews, and research from publicly available documents are summarized in this draft report and that information has helped to inform our initial focus on areas of potential concern for future investigation.

2.0 AIRPORT DESCRIPTION

SIA is located within Spokane County and is jointly owned by Spokane County (the County) and the City of Spokane (the City). The operating authority of Spokane Airports is the Spokane Airport

Board, consisting of seven appointees from the two governmental bodies. The airport property is comprised of multiple parcels with a range of property uses, the most common being vacant land (Table 2.1). The airport operates as a regional commercial service for the surrounding community and is the second largest airport in the State of Washington. The Airport offers service to destinations across the Western, Midwestern, and Central United States, and onward connections to the rest of the country and the world. The FAA recognizes SIA as a "small hub." As an airport serving passenger aircraft SIA is required by the FAA to be certified under 14 Code of Federal Regulations (CFR) Part 139, Certification of Airports (Part 139).¹ The Airport Operating Certificates specified in Part 139 are for compliance with safety and emergency response requirements, including the federal requirements for aircraft rescue and firefighting.

The term "Site" as used in this report refers to the main operational area within the SIA property boundary as shown in Exhibit A of the EO and presented in Figure 2.1 as the "Primary Airport Area" and is not meant to define the facility boundary as defined by WAC 173-340-200 as that spatial designation is the subject of this ongoing investigation. The fence line shown in Figure 2.1 surrounds the portions of the site that are considered part of the SIA secure operations, also called the "airside" or secure area, as discussed further in Section 2.1.

The sections below provide further information discovered to date regarding the airport operations and the environmental setting.

2.1 Current Operations

As mentioned above, the City and County of Spokane jointly own SIA and the Airport Business Park (Spokane Airports), which entails operational areas including the Airport Passenger Terminal and airfield. Existing buildings are leased for third-party use and real estate is available and designated for third-party development or built-to-suit. Combined, operations within the SIA property include airfield operations and supporting infrastructure, and several on-Site businesses.

Airport operations are divided into airside and landside areas, as shown in Figure 2.2. Airside operations are within the secure fenced Air Operations Area (AOA). The runway side of the passenger terminal, field maintenance, fuel station, and glycol storage area are all part of the AOA. Third party operators holding leases are also within the fenced area. The Aerospace center is a third party leased area where local businesses such as International Aerospace Coatings (IAC) and others operate.

Landside airport infrastructure, outside of the secure fenced AOA, includes the stormwater recovery area and land treatment area. Additional aviation-related support industries and non-aviation businesses are present outside the fence line. Several lease holders have operations concentrated in the Business Park area, including cargo/shipping facilities (Federal Express, United States Postal Service, United Parcel Service, Amazon Air), Spokane Waste to Energy, Spokane Materials and Recycling Technology Center (operated by Waste Management), and Geiger Corrections Center (operated by Spokane County).

2.2 Site History

The land upon which SIA is situated has been under the ownership and management of the City, County, Spokane Airport Board or a branch of the Department of Defense (DoD) since 1939. Prior to the formation of the Spokane Airport Board, it is unclear which roles the City and County assumed in the leasing and management of the property, but they will jointly be referred to as Spokane in this section. Construction of the initial airfield (called Sunset Field) began in 1939 after

¹ <u>https://www.faa.gov/airports/airport_safety/part139_cert</u>

Spokane leased the land upon which SIA sits to the DoD. Sunset Field was then purchased by DoD from Spokane in 1941 and was renamed Geiger Field in 1943.

During World War II Geiger Field served as a DoD base for training bomber crews. (USACE, n.d.) After World War II management of the airport was given to Spokane in 1948, though this was short lived as Air Force activities resumed in 1950 during the Cold War. Over the years, Geiger Field continued to serve as a DoD airfield hosting different units such as the US Air Force, Army National Guard, and the Air National Guard. In 1960 was then renamed Spokane International Airport retaining the International Air Transport Association code of GEG. Major training and air defense missions were maintained at the airport until 1963. At this time, control of main runways was transferred to the Spokane Airport Board while some areas that are currently part of SIA, such as family housing units and National Guard areas were owned, leased or otherwise occupied by a branch of the DoD. The Army National Guard leased a portion of SIA, currently Aerospace Park, until 2006 (USAF, 2006). It in unknown what year SIA acquired this property and the adjacent parcels that encompass the current Air National Guard property as it was designated as the pre-existing location Amy National Guard in the 1950s Geiger Field Master Plan (USAAC, 1956).

Due to the types of operations and use of the Site formerly owned by, leased to, possessed by or otherwise operated by the DoD prior to October 1986, the site was classified as a Formerly Used Defense Site (FUDS) (FUDS Installation ID WA09799F340300) (USACE, n.d.) under the Defense Environmental Restoration Program (DERP). Prior to the establishment of DERP, the DoD began assessing and cleaning contaminated sites across the US in 1975 under the Installation Restoration Program (IRP). IRP has a broader constituency of sites as it applies to FUDS in use before or after 1986, Base Realignment and Closure (BARC) sites, and active installations. Initial investigations of DERP FUDS occurred from 1984 to 1991 (Herrera, 2003) when PFAS, associated with AFFF or other products, would not have been a potential contaminate of concern for evaluation. Additional IRP investigations managed by the USACE took place during this time and did not evaluate potential PFAS contamination.

Details related to DoD and SIA joint fire training areas have been documented in relation to soil and groundwater contamination of petroleum hydrocarbons (ERM-West, Inc., 1996; OpTech, 1995). In-between the southeast end of runway 3-21 and the current Air National Guard property a portion of land was used as a landfill from 1961 to 1967. While these waste pits were periodically burned – it is uncertain whether these burning events were used as fire training events. During this period, it is known that the Air National Guard began training firefighting crews north of the landfill on unprotected ground in a burn pit. A clay lined pad was installed in 1986 and it is reported that fuel and water runoff was drained into an adjacent catchment pond (location unknown). It is unknown what year SIA began participated. Further details of SIA participation are detailed in section 4.2.3. Given the timeline of fire training events, the use of AFFF by the Air National Guard prior to 1986 qualifies this specific area as a formal DERP-FUDS. At this time, documents cited in IRP reports which may contain further information have been requested but not yet received.

Exhibit 2.1 SIA Ownership & Historical Operations

Year	Geiger Field Ownership & Operations History						
1939	Spokane leases what is now GEG to the military for one dollar a year, banning civilian use. The We Progress Administration and the Army jointly prepared the runways at Sunset Field. ^a						
1941	The DoD purchased Sunset Field from Spokane for World War II B-17 and C-47 training facility. ^a						
1943	Sunset Field is renamed Geiger (GEG) Field, and the Army Air Depot begins operations. ^a						
1946	A portion of the airfield was designated a municipal airport, and commercial airline operations were moved from Felts Field to Geiger Field. ^a						
1948	Post WWII, the management of Geiger Field returned to Spokane. ^a						
1950	The management of Geiger Field is returned to the DoD as Air Force activities resumed during the Cold War. ^a Additional base infrastructure constructed in current Business Park.						
1960	Geiger Field was renamed to Spokane International Airport. ^a Air Force 116th Observation Squadron and the 141st Division Air Service move to present location at SIA and are redesignated as the 116th Fighter Interceptor Squadron and the 142nd Air Defense Wing. ^c						
1962	Spokane Airport Board is formed under the Airport Joint Operations Agreement ^b						
1963	Air Force training and defense operations cease at Geiger Field. All but the National Guard and the Air Force family housing were transferred to the Spokane Airport Board. ^b						
1976	The Air Force moves the Air National Guard 141st from GEG to Fairchild Air Force Base. ^d The 242nd Combat Communications Squadron (CCSQ) moved in as the host unit of the Spokane ANGS after the 116th and 142 nd transferred from the site. ^d						
1979	Geiger Corrections Center Constructed from former base housing. ^e						
1996	DoD transfers remaining Air Force family housing to the Spokane Airport Board. ^b						
2006	Army National Guard transfers helicopter operations from SIA (current Aerospace Park Area) to Fairchild Airforce Base. ^e						
2010	Air National Guard 242nd Combat Communications Squadron completes move to Fairchild Airforce Base. ^f						

References:

- a) (Mead and Hunt, 2014)
- b) (USACE, n.d.)
- c) (Spokane County, 2019)
- d) (ERM-West, Inc., 1996)
- e) (GHD, 2018)
- f) (USAF, 2006)
- g) (USAF, 2009)

2.3 Current and Historical Land Use

Land use near SIA is mixed and includes commercial, industrial, residential, agricultural, and open space. Planning for land use around airports must address several fundamental compatibility issues including safety, operational expansion, and noise. In addition, the proximity to Fairchild Air Force Base (AFB) creates another layer of complexity in local land use planning.

Properties bordering SIA to the South are zoned as Light Industrial (LI), to the West are a mix of Rural Traditional (RT) and Light Industrial parcels. On the North side of SIA, properties in the city of Spokane are designated as LI and within the Airport Overlay Zone. East of SIA (East of S Geiger Blvd.), properties are zoned as a Rural Cluster (RC), LI, Low Density Residential (LDR), Medium Density Residential (MDR), and several small parcels of High Density Residential (HDR).

Parcels owned by the Spokane Airport Board are not zoned according to the county zoning codes as they are within the Airport Overlay Zone.(Board of Spokane County Commissioners, 2004) Property use descriptions indicate that the majority of parcels within SIA are labelled as vacant or used for aircraft transportation. Only five out of 67 parcels within the SIA area are not described

in either of these two ways. These properties are described with a mix of other services, governmental, or unclassified labels.

The Environmental Risk Information Services (ERIS) data package was obtained to assess changes in land use and topography over time. It includes historical aerial photos from United States Geological Survey (USGS) and the United States Department of Agriculture (USDA showing the airport area. Aerial imagery from five different years is shown in Figure 2.3 and summarized below:

- 1952 aerial imagery shows Geiger Field runways and associated infrastructure in the current Business Park area and the Army Air National Guard in the current Aerospace Park area, corresponding to the Geiger Filed Master Plan (USAAC, 1956). The Park Drive waste disposal area and excavation pits, recognized as a United States Army Core of Engineers (USACE) cleanup site (Ecology Facility/ Site No. 664, Cleanup Site ID 1233) are also visible. An excavated dumping area is also visible at the southern end of what is currently runway 3-21 on W Electric Ave, also a recognized USACE cleanup site (Ecology Facility/ Site No. 665, Cleanup Site ID 1149).
- 1962 aerial imagery shows further development of Geiger Field in the current Business Park area. Structures on the eastern side of the Army Air National Guard area are demolished and replaced by pavement. The Air National Guard infrastructure also appears in the location it currently occupies on W Electric Ave. Excavation pits of the Park Drive waste disposal area have expanded to the south and west. An additional series of buildings appear northwest of the Park Drive waste disposal area, adjacent to the current stormwater collection area.
- 1972 aerial imagery shows the beginning of current SIA infrastructure including the Terminal, expanded runways, and fuel area, parking lots, and construction of W Airport Dr. Between 1962 and 1972, some structures in the former Geiger Field area were demolished. The northeast portion of the densely vegetated topographic low area appears to have been infilled.
- 1991 aerial imagery shows the continued growth of SIA infrastructure to the northeast of the passenger terminal along with additional roadways. The areas north and northwest of the passenger terminal along U.S. Highway 2 underwent non-residential development. The Park Dr. waste disposal area is visibly infilled and the Spokane Waste to Energy facility was constructed adjacent to its southeastern extent. Some structures remain on the western portion of forger Geiger Field parallel to runway 3-21, though a majority in this area were demolished except for the buildings which are utilized as the Spokane County Correctional Facility. On W Electric Ave activity at the Remtech soil remediation area west of the Air National Guard property is visible. Adjacent to Remtech, the previous Geiger Field dumping area was infilled, and the land surface displays scarring in what is known to be the fire training area.
- 2017 aerial imagery shows further growth of SIA infrastructure, including the southward expansion of runway 3-21 and pavement of ramps on the western side of the Business Park area. Additional large structures in the business park areas include the Waste Management Recycling Center adjacent to the Waste to Energy facility and the USPS hub. Non-residential development has continued to expand in the areas north and northwest of the passenger terminal along U.S. Highway 2.

2.4 Geology and Hydrogeology

The regional geological and hydrogeological framework, as well as other information foundational toward building a conceptual site model, are detailed in Appendix A Geology & Hydrogeology (Haley & Aldrich, 2024) and generally summarized below. Due to the geological complexity of the area and limited Site-specific data, the information below presents a regional review of information to serve as a basis for future Site-specific work.

2.4.1 Regional Geology and Hydrogeology

SIA is situated within the West Plains area of Spokane County, a subregion of the larger Columbia Basin. The West Plains is bounded in the north by the Spokane River; bounded in the east by Marshall Creek, Latah Creek (formerly Hangman Creek), and the Spokane River; bounded to the south by upland buttes; and bounded in the west by the upland buttes and Spring Creek of eastern Lincoln County (McCollum and Pritchard, 2012).

The regional geology of the Columbia Basin consists of three major units: basement rock, the Columbia River Basalt Group (CRBG) with associated sedimentary interbeds, and overburden. The basement rock was subject to compression which formed faults creating rugged, high areas. During the Miocene era, lava flows filled the valleys between elevated basement rock, the exposed peaks are called buried hills or steptoes. During the Pleistocene, deposits from glacial floods formed a sedimentary layer over the lava deposits. The deposition of the lava flows generally creates a stratigraphic sequence with three distinct segments: flow bottom, flow interior, and flow top. Additional processes such as inflation (when hot lava pushes into an already cooled lava flow) disrupt the vertical superposition of the typical flow sequence. Based on hydrological resources, the West Plains region in the eastern Columbia Basin drains generally from southwest to northeast. The basement rock has low permeability, acting as the lower boundary of the West Plains aquifer system. As with the greater Columbia Basin, the West Plains aquifers are contained in units of the flood basalts, the CRBG, and the overlying unconfined sediment (Deobald and Buchanan, 1995). Understanding the CRBG stratigraphy and sedimentary deposits is a critical piece to characterizing the West Plains hydrogeologic system.

2.4.2 Site-Specific Geology and Hydrogeology

The topography of the airport area is a relatively flat plain gently sloping downward from an elevation of 2390 feet to 2290 feet above mean sea level heading from the southern end of the site to the northeast area (Derkey et al., 2004; Hamilton et al., 2004). The geology at the Site generally consists of sedimentary overburden deposits underlain by the CRBG at variable depths. Overburden thickness across the site ranges between 4 feet and 32 feet consisting of mostly of silt, silty sand to sand, and gravels. Fill materials are also present in some areas from previous remedial and waste disposal activities related to Former Geiger Field operations. The depth to basalt under the overburden tends to be deeper in the southwestern portion of the Site and shallower in the stormwater recovery area to the northeast. Depth to groundwater was observed to range from less than 2 feet to 27 feet below ground surface (bgs) in March of 2024. Within the Former Geiger Field area sits another cleanup site, Geiger Corrections Facility (Facility/ Site No. 663, VCP No. EA0263). Ongoing investigations and groundwater monitoring at the Geiger Corrections Facility indicate seasonal variation in groundwater flow direction depending on depth with flow directions reported between east and northwest. Proximity to paleochannels may also influence flow paths in some sections of the northern and western boundaries of the Site. The southeastern boundary of the paleochannel closest to Airway Heights parallels the western portion of the Site and is located approximately 1.5 miles west of SIA and the southern point of the paleochannel originating near the north side of SIA (GeoEngineers Inc., 2007; Northwest Land & Water, Inc., 2012).

In general, more information is needed to determine Site-specific groundwater flow paths; more data is needed to substantiate groundwater elevations, flow directions, and hydraulic gradients. These will be evaluated in future investigations.

2.4.3 Topography and Land Cover

The landscape within the West Plains consists of mixed semi-arid shrub steppe grasslands, sparse mixed conifer forest and shrub steppe, barren rock surfaces, agricultural land, and urbansemi urban uses (GSI Water Solutions Inc. et al., 2015).The landscape around the Site also includes some stormwater infrastructure, impermeable surfaces caused by shallow to surficial bedrock, and coarse-grained deposits that infilled paleochannels to the north-northwest, west, and southwest of the Site.

2.5 Groundwater

Groundwater is present at the Site in unconfined sediments, also known as the overburden aquifer, and the CRBG aquifer. Groundwater in the West Plains area generally flows northeast, towards the Spokane River. Drinking water for the City of Airway Heights (Water System ID No. 006502) comes from two interties with the City of Spokane, as well as the CRBG aquifer, and the paleochannel within the West Plains (WA DoH, 2023). In 2017, perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were detected in municipal wells and attributed to firefighting activities at Fairchild AFB (ATSDR, 2022). The City of Airway Heights has since been reliant on City of Spokane after emergency water supply connection was established in 2018 (City of Spokane, 2023). The alternative water supply identified for the City of Airway Heights is the Spokane Valley-Rathdrum Prairie Aquifer (SVRP) (GeoEngineers, 2021).

East of the West Plains, the SVRP is the only drinking water source for the City of Spokane; the U.S. Environmental Protection Agency (EPA) designated the aquifer as a sole source aquifer in 1978(USEPA, 1978).

According to the USGS, the SVRP aquifer in western Spokane consists of two relatively independent systems mostly separated by a buried basalt ridge. The basalt ridge extends approximately two miles south of Five Mile Prairie, a neighborhood located on the north side of Spokane. The main body of the aquifer is east of the basalt ridge. The two SVRP aquifer systems are presumably connected by the Trinity Trough that breaches the basalt ridge (USGS, 2005).

2.6 Surface Water

The Site is located within the Hangman Watershed (HUC 17010306) and the Lower Spokane Watershed (HUC 17010307). The United States Fish and Wildlife Service (FWS) has classified several streams within and surrounding the Site as perennial or intermittent in their database, as identified in Figure 2.4 and described below:

Unnamed Stream 1

This stream is comprised of a series of discontinuous perennial and intermittent streams along the northeastern portion of the Site. Segments east of the Perimeter Ditch located within the Primary Airport Area are classified as unknown perennial. The 'unknown' classification indicates uncertainty in consistency of water flow, underlying substrate, and dissolved oxygen concentrations. The flow direction of these stream segments is generally east, northeast. Outside of the Primary Airport Area segments are classified as intermittent seasonally flooded streams with unconsolidated beds. The flow path of the intermittent sections of this stream shifts to the northeast east of W. Allan Rd following S. Geiger Blvd. flowing towards Highway 2. Connectivity between segments is not known and requires further evaluation.

Unnamed Streams 2 & 3

There are two unnamed streams located within the southwestern portion of the Site boundary. The FWS classified both streams as intermittent seasonally flooded streams. The easternmost stream begins south of SIA and flows north, here referred to as Stream 2. Stream 2 begins as an outflow of the ponds located in The Plains Golf Course, then flows north toward W. Geiger Blvd, parallel to S. Thomas Mallen Rd. A waterbody located between the Caterpillar distribution center and the Keystone Automotive Operations drains into the stream prior to W. Geiger Blvd. Stream 3 begins as an outflow of a waterbody approximately 500m southwest of the Spokane County Sheriff's office. The stream flows though Spring Lake and Lake Eleanor before it continues northeast and converges with Stream 2, approximately 700 ft to the southwest of the current SIA Fire House. The combined flow is directed generally to the north towards the catchment basin of the perimeter ditch that runs along the western boundary of the airport.

Wetlands

In 1993 the Washington State Department of Ecology Wetlands Program conducted a site investigation to determine if on-Site areas were subject to wetland regulations. The investigation by Ecology concluded that the habitat and detention ponds at the mouth of the Stormwater Recovery Area did not exist prior to stormwater discharge and is part of the stormwater system. Therefore, the ephemeral ponds in the Stormwater Recovery Area are not subject to state regulation as wetlands (WA ECY: Nichols, 1993).

3.0 RECORDS REVIEW

Site-provided historical records, publicly available information, information purchased from a service provider of environmental due diligence data (ERIS), and interviews of onsite personnel were utilized in compiling this report. Details on the relevant reports and data sources are provided in this section and summarized in Exhibit 3.1.

Record Type	Reference	Description
Incident Records Review	National Transportation Safety Board (NTSB) Aviation Investigation Search	Aviation accident database contains civil aviation accidents and selected incidents that occurred from 1962 to present within the United States.
Site Environmental	Environmental Risk Information	Database report, Historical
Records	Services (ERIS)	Aerials, Fire Insurance Maps.
Previous Investigations	Washington Department of Ecology – What's In My Neighborhood ^a	Previous and ongoing contamination cleanup site details.
Site Personnel	Former fire chief, current Chief	SIA Fire Chief from 1999-2022
Interviews	Operating Officer (COO)	SIA COO from 2008 to present

Exhibit 3.1 Summary of Records Reviewed

Notes:

a) <u>https://apps.ecology.wa.gov/neighborhood/?lat=47.624284&lon=-117.528921&zoom=14&radius=false</u> accessed February 28, 2024.

3.1 Interviews of Site Personnel

GSI conducted interviews with the former fire chief and COO at SIA. The former fire chief worked at SIA from March 1999 to January 2022. The former fire chief is well versed in the standard practices and procedures associated with aqueous film-forming foam (AFFF) use at the site and

provided insight into historical AFFF use at the site. He was present for the 2016 changeout from C8 to C6 foam at SIA and is familiar with the procedures followed in those scenarios.² A second follow up interview was conducted with the COO employed at SIA since 2008. He provided additional information on general site operations. Information provided during these interviews with GSI is provided primarily in Section 4.0.

3.2 Incident Record Review

Records available from the National Transportation Safety Board (NTSB) were reviewed to identify potential incidents *that may have* been responded to by SIA ARFF. Aviation final investigation reports associated with the GEG airport code were reviewed for details indicating incident locations and details indicating aircraft fires and or explosions. Incidents with reports indicating hard landings or fires were further explored by researching local news records. Articles from local newspapers and media sources were also used to identify significant fire events in the area *that may have* required emergency response with AFFF by SIA or emergency response mutual aid partners. The identified NTSB incidents where fire was mentioned, and any incidents identified in public news articles were reviewed during the interview with site personnel to obtain additional details regarding the emergency response methods.³ The NTSB reports do not provide detailed information regarding specific response actions for recorded incidents.

3.3 Site Environmental Record Review (ERIS)

The information received from ERIS that was used in this Site Assessment included aerial photographs and fire insurance maps. A summary analysis of historical aerial images is provided in Section 2.3; however, no fire insurance maps were found in the ERIS search for the Site.

3.4 Data Gaps

The review and compilation of SIA operations and PFAS usage provides a foundation for building the Preliminary PFAS Investigation and Remedial Investigation Workplans to evaluate the possible existence and extent of PFAS contamination on the Site. However, some information was either not available or could not be located at the time this report was prepared. In addition to the uncertainties in Site-specific hydrogeology already detailed in Section 2.4, additional specific data gaps include:

- Depth to groundwater and direction of groundwater flow across the site including seasonal variation.
- Connectivity between different groundwater bearing units across the site.
- Flow and connectivity of surface water features.
- Confirm current (2024) stormwater infrastructure.
- Purchase records for AFFF prior to 2017.
- Documentation of any soil work that has been conducted in the potential areas of concern (Section 8).

If additional information becomes available over the course of further investigation, it will be included in subsequent reports, such as the Remedial Investigation Report.

² Legacy AFFF is often called "C8" due to presence of long-chain PFAS, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Beginning in 2016, re-formulated AFFF without long-chain PFAS became commercially available, often designated as "C6" indicating that all PFAS in the AFFF have six or fewer fluorinated carbons. See further detail in Section 4.1.

³ NTSB Incident Numbers SEA96FA040 and SEA94FA085 (https://carol.ntsb.gov/)

4.0 HISTORICAL AND CURRENT FIRE EMERGENCY RESPONSE SYSTEM

SIA is recognized by the FAA as a small hub with a Class I Part 139 classification. The FAA also prescribes an ARFF Index value for the purposes of aircraft rescue and firefighting, determined by the length of the aircraft serving the airport. The ARFF index then dictates the number of ARFF vehicles, quantity of AFFF to be stored, and several other emergency response related requirements needed to provide for the safety of passengers and airport staff.⁴ SIA has been assigned an ARFF Index of "C", which means that the mobile units at the site must include 1) one vehicle with a dry chemical extinguishing agent in addition to AFFF and 2) one or two vehicles carrying sufficient AFFF and water to produce at least 3,000 gallons from all vehicles, as specified in 14 CFR 139.317.

The SIA Fire Department currently consists of 22 career firefighters working out of the current SIA Fire House, which is equipped to respond to emergencies involving ARFF and structural firefighting for the airport. ("Spokane International Airport Fire Department," 2024a) The ARFF division of SIA responds to all reportable hazardous material and/or chemical spills. (CES, 2015).

4.1 Fire Fighting Foam Background Information

Many airports began using AFFF in the 1970s, and in 2004, the FAA mandated the use of foam meeting DoD military specifications (Mil-Spec) at FAA-regulated Part 139 airports (HRP, 2024). The FAA has required that any Part 139 airport must use firefighting foam that met this military specification, as documented through the agency's advisory circulars and "CertAlerts," guidance (FAA, 2004). For example, the 2006 CertAlert stated that "[a]ny [aqueous film forming foam] purchased after July 1, 2006 by an airport operator certificated under Part 139 must meet the Mil Spec as mentioned above." (FAA, 2006). The 2016 CertAlert further instructed airports to "check the [Department of Defense] [Qualified Product Database] web site before each AFFF purchase," to ensure they were using the firefighting foam that met military specifications (FAA, 2016, p. 2). This 2016 guidance superseded CertAlerts from 2006 and 2011, each of which also required using AFFF that met military specifications (FAA, 2011, 2006).

As to FAA oversight, the FAA directly supervised the use of this firefighting foam, including discharges of the foam at the airport. As explained in the 2019 CertAlert, airports operating under Part 139 must maintain and test their firefighting systems, "must maintain proper successful documentation of the testing" of their aircraft rescue and firefighting vehicles and must "have [the documentation] available during the [airport's] periodic [safety] inspection." (FAA, 2019a, p. 1). The FAA guidance further stated that "[i]f the airport operator does not conduct testing within these intervals, *the FAA will require the airport operator to discharge AFFF during the airport's periodic inspection*, for those vehicles identified to meet the ARFF [Aircraft Rescue and Firefighting] Index." (emphasis added) (FAA, 2019b, p. 1). According to the FAA, "[t]esting the system is an integral part of maintaining [aircraft rescue and firefighting] vehicles in optimal condition for an emergency response." (FAA, 2019b, pp. 1–2).

Before the 2019 CertAlerts, the FAA had not approved a method for testing the ability to discharge the firefighting foam other than by dispensing it onto the ground. But in the 2019 CertAlert the FAA began allowing airports to conduct their testing by using "AFFF testing equipment that do not require foam to be dispensed onto the ground." (FAA, 2019b, p. 2). The reason for this shift was that the FAA recognized "growing concern over the use and discharge of AFFF at airports" because "[t]he molecular composition of specification MIL-PRF-24385 contains a chemical

⁴ <u>https://nap.nationalacademies.org/read/23035/chapter/1</u>

compound"—i.e., PFAS—"found to potentially contaminate drinking water." (FAA, 2019b, p. 2). Until 2023, the FAA did not allow using fluorine-free foams, because "the fluorine-free foams on the market do not match the performance of their fluorinated counterparts" and "are not able to provide the same level of fire suppression, flexibility, and scope of usage as MIL-PRF-24385 AFFF firefighting foam" (FAA, 2019b, p. 2).

In 2018, Congress directed the FAA to remove the requirement to use PFAS to meet the performance specifications of Mil-Spec foams, and in 2022, Congress further directed the FAA to develop a transition plan to replace all AFFF with fluorine free alternatives. In January 2023, the DoD issued Military Specification MIL-PRF-32725, which is a fluorine-free foam certification; fluorine-free alternatives were added to the Quality Product Database later that year (FAA, 2023).

The types of firefighting foams used to satisfy FAA regulations both historically and currently at SIA are discussed below and in Section 4.2.3.

4.1.1 Historical Foam System Transitions

During the interview with the former SIA fire chief, a historical review of foam types present at the site and typical changeout procedures were discussed. Prior to the development of PFAS-based AFFF, the primary fire response agent at SIA was protein foam. Between the 1970s and 1999, the first Mil-Spec C8 foams, including 3M Lightwater, were brought onsite, according to interviews with site personnel. As additional C8 formulations received Mil-Spec approval, other Mil-Spec foams were purchased as needed, but 3M Lightwater was the primary AFFF used at SIA and across most civilian and military airfields. Within the Mil-spec guidance, mixing of different Mil-Spec AFFF was permitted, and was also a historical practice at SIA. In the early 2000s, EPA negotiated an agreement with AFFF manufacturers to prohibit C8 foams by 2015, due to information it had obtained about the environmental and/or health impacts of those foams (EPA <u>Docket ID: EPA-HQ-OPPT-2006-0621</u>). Neither EPA nor foam manufacturers ever shared related information with SIA. After the C8 foam was banned, SIA transitioned to a C6 AFFF formulation in 2016.

During the 2016 foam changeout, two (2) 500-gallon single-wall plastic tanks storing C8 foam concentrate were emptied and refilled with the C6 AFFF concentrate. The legacy C8 foam concentrate was donated to an ARFF training facility outside of Spokane County. The concentrate-containing tanks on SIA crash response trucks were rinsed and washed out to remove debris from the tank bottoms. Rinse water was sent to the drains at the current SIA Fire House, which flow to an oil water separator, then to the sanitary sewer system and the City of Spokane publicly owned treatment works (POTW). During the interview with the former SIA fire chief, it was mentioned that the empty foam concentrate tanks on the airport's crash trucks may have been washed out outside of the current SIA Fire House (on the concrete pad on the south side of the building) prior to the filling the tanks with C6 foam concentrate, in which case rinse water may have flowed into the nearby grassy area or penetrated the concrete pad. In 2016 there was no guidance or established procedures related to rinsing of equipment or crash response trucks or management of the rinsate. No further information is currently available regarding this specific changeout event.

The SIA purchased fluorine-free foam to replace all PFAS-containing AFFF in September 2023, when approved to do so by the FAA. (SIA, n.d.) The SIA is waiting for guidance from regulators on best practices for removal of C6 foam concentrate and cleaning of mobile foam unit tanks and fixed foam concentrate storage tanks prior to replacing with fluorine-free foam. SIA must also retrain its firefighters to use the new F3 foams.

Exhibit 4.1 Types of Foam Used Over Time at SIA

Year	Event
Between 1970s and 1999	Mil-Spec 3%: 3% concentrate C8 foams (3M Lightwater, Ansulite, etc) installed in mobile units, fixed units, and stored at the SIA Fire House
2016	Mil-Spec 3%: 3% concentrate C6 foams (Ansulite, Chemguard, Tyco) installed in mobile units, fixed units, and stored at the SIA Fire House
2023	Fluorine-Free Foam purchased and stored at the SIA, n.d.). According to the COO, the SIA is waiting for guidance from regulators before changeouts from C6 to fluorine-free foams, particularly regarding rinsing procedures and handling of rinsate.

Only 3% concentrate foam was used at SIA and the types of foam used over time are presented in Exhibit 4.1. In the early 2000s (2002 or 2003), over 1,000 gallons of C8 3M Lightwater (Mil-Spec) foam was purchased from an aircraft carrier as military surplus. Typical foam purchases were primarily small quantity packaging such as 5-gallon pails and 55-gallon drums. While C8 was used at the site, a variety of Mil-Spec approved brands were mixed for use. The 3M Lightwater brand was primarily used with some Ansulite and National Foam mixed in. According to the former fire chief, foam restock purchases were budgeted every year, but actual purchases were not less frequent than every 5 years. In accordance with FAA regulations, foam supply at SIA was kept at roughly 1,300 to 1,600 gallons (depending on the truck inventory) to account for about 300 gallons more than the volume required to load the foam-containing trucks twice. During interviews with the former SIA fire chief, Ansulite was identified as the main C6 foam used at SIA after the 2016 transition. Based on purchase records from 2017 provided by SIA, Chemguard and Tyco were also C6 AFFF brands used at the site.

4.2 Fire Suppression System Information

The SIA fire suppression system consists of fixed and mobile foam systems. Fixed foam systems include foam concentrate storage and permanent infrastructure for foam application such as piping and nozzles. Mobile units typically include fire or crash trucks fitted with tanks for foam concentrate storage. In response scenarios, mobile units will connect hosing to hydrants or other water sources to be mixed with foam concentrate to deliver finished foam.

4.2.1 Fixed Foam Systems

Based on information provided during the SIA fire chief interview, foam is currently stored onsite at the SIA Fire House, the field maintenance warehouse, and Hangar 725 (Exhibit 4.2). The historical SIA Fire House, which was located directly northeast of the terminal as shown in Figure 4.1, was used from about the mid-1970s until 2014. During this time, a supply of C8 foam was stored in three 300-gallon plastic tanks joined together with a manifold and fitted with a pumping system used for resupplying mobile foam units. After 2014, the C8 foam concentrate was transferred into two 500-gallon poly tanks at the current SIA Fire House, located southwest of the terminal as shown in Figure 4.1. The three 300-gallon poly tanks and pumping system were left onsite and repurposed for refilling pavement (not aircraft) deicing trucks with deicing fluid. The two 500-gallon tanks at the current SIA Fire House are used for refilling the crash trucks. Spill containment is in place for storage tanks and floor drains in the SIA Fire House flow to the sanitary sewer (CES, 2015). SIA Fire House drains flow to the oil water separator, then to the unlined perimeter ditch. The former fire chief noted one incident of a leaking valve in the foam storage tank at the SIA Fire House. The leaking valve was repaired, and foam was cleaned from the area using absorbent pads.

The fixed foam system installed at Hangar 725, located in the General Aviation area on the east side of the airport property, consists of two 1,000-gallon tanks of AFFF concentrate. The system was installed in 2016 and contains ChemGuard (C301MS). The system is regularly maintained, in good condition. All historical testing was performed using only water with no usage or mixing of the stored AFFF concentrate (the concentrate is held in tanks and valved off from the system). There are no known incidents related to the discharge of AFFF in the hangar manifold system.

A dry manifold fire suppression system is installed at the fueling station that does not rely on the use of foam or foam concentrates. Historically, a supply of about 1,000 gallons of C8 foam concentrate was stored at the field maintenance building and could be connected to the manifold at the fueling station in case of a fire. When the tank was removed from the field maintenance building, the C8 foam was added to the storage capacity at the SIA Fire House. The former fire chief was unsure of the year this took place.

Prior to the former fire chief's time at SIA, the fuel farm was in the easternmost parking lot, near the Field Maintenance Area (near the intersection of West Aviation Avenue and Flint Road) until 1993. No evidence was found indicating the former fuel farm was fitted with a fixed foam manifold and storage tank or had any AFFF stored there.

Foam Type	Year(s)	Total (gallons)	Storage Equipment and Location	
	(1990s)- 2014	900	 Stored outdoors at the historical SIA Fire House: 3 x 300-gallon Poly Tanks (CES, 2015) 	
	Unknown years	1,000	 Field maintenance building: 1 x 1,000-gallon tank (based on interview) 	
C8 foam ¹	Current (unknown start year)	2,000	 Stored at Hangar 725: 2 x 1,000-gallon tanks of foam concentrate (based on interview) 	
	2014-2016	1,000	Stored at the current SIA Fire House: • 2 x 500-gallon Poly Tanks (CES, 2018)	
C6 foam ²	2016- current	1,000	Stored at the current SIA Fire House: • 2 x 500-gallon Poly Tanks (CES, 2018)	
Fluorine-Free foam	2023- current	1,280	Stored at the current SIA Fire House: • 5 x 256-gallon totes (interview with COO)	

Exhibit	4.2	Foam	Storage	Locations
---------	-----	------	---------	-----------

Notes:

1. A variety of Mil-Spec C8 foams were mixed for use, including primarily 3M Lightwater with some Ansulite and National Foam mixed in.

2. In the interviews with the former fire chief, Ansulite was identified as the main C6 foam used at SIA. Based on purchase records from 2017 provided by SIA, Chemguard and Tyco were also foam brands used at the site.

No additional fixed foam systems are known to be located currently or historically at SIA.

4.2.2 Mobile Foam Systems

The current SIA Fire House was constructed in 2014. Before construction, mobile equipment was stored at the previous SIA Fire House, located northeast of the A and B concourses from 1978 to

2014 (*Spokane International Airport Fire Department*, 2024b).⁵ Both current and historical SIA Fire Houses and current foam storage locations are shown in Figure 4.1.

Prior to 2020 there were three mobile foam systems in use, two trucks with 1,500-gallon water tanks and 200-gallon foam concentrate supply and one more truck that held 3,000-gallon water tank and a concentrate supply of 400-gallons. It is not currently known when these trucks came into service the number of active trucks in service (three) has been the same since 1999. One 1,500-gallon truck is inactive but still currently stored on the Site (see below), ownership of the two remaining two trucks was transferred to other firefighting training facilities.

Mobile foam systems currently stored at the current SIA Fire House (9000 West Airport Drive) include the following mobile units and foam concentrate capacities:

- 2 crash response trucks with 3000-gallon water tanks and 400-gallon foam concentrate capacity.
- 1 crash response truck with 1,500-gallon water tanks and 200-gallon foam concentrate capacity.
- As mentioned above, an additional 1,500-gallon water capacity truck is inactive and stored onsite. There are no additional trailers or response vehicles with foam onsite.

4.2.3 Fire Training Information

Every three years, a crash training exercise is required by the FAA for SIA to maintain its Part 139 Certification and remain operational as a commercial passenger airport. The most recent training exercise in 2016 was staged at the Postal Service processing and distribution center on the southeast side of the main runway where an old 737 obtained from Federal Express was parked for use in required training exercises. Known as the Triangle Ramp, location C in Figure 4.1, this location has been used as the primary training area since 2000. Based on information reviewed and discussion with SIA's former fire chief, it appears that only water (no foam) was used during this training.

In addition to the FAA required training exercises, joint training sessions between SIA, Air National Guard, and Army National Guard took place historically on the south side of the airport, Location B in Figure 4.1, but was discontinued before 1999 due to hydrocarbon use without a recovery system in-place. From the 1950s through the 1980s various oils and solvents were provided by the Air National Guard for use in fire-training exercises (OpTech, 1995). Per the former SIA Fire Chief, these fire trainings were led by the Air National Guard and SIA ARFF equipment was not used. It is possible that AFFF was sprayed from Air National Guard equipment during these trainings. Training at this location and any possible usage of foam was discontinued after 1999.

4.2.4 Required Foam Testing and Calibration Events

FAA required flow foam testing to pass inspections. In 2016, testing with foam was no longer required, but it was still common practice for water to be sprayed through the foam systems for testing. At SIA, no rinsing of the fixed or mobile systems took place between flowing foam and water through the nozzles, hoses, pipes, etc. Some residual amount of AFFF may have been entrained during these water-only exercises. In 2016 due to environmental concerns, SIA ceased spray testing with foam. No testing occurred at SIA from 2016 to 2019. In 2019 the FAA no longer

⁵ Please note that this information is sourced from a publicly editable wiki. While efforts were made to ensure accuracy, the content may be changed by users. The citation provides the date the information was accessed.

required foam to be sprayed during inspections. As of 2019, SIA has used a specialized NoFoam System apparatus to allow for the FAA-required testing of fire vehicle foam distribution mechanisms without discharge of AFFF (SIA, n.d.).

Annual inspections and maintenance of the fixed foam system at Hangar 725 is performed by Western States Fire Protection (Liberty Lake, WA). Testing is performed using water only with no co-mingling of the stored AFFF concentrate. During freezing temperatures, the system would occasionally be triggered and release water into the hangar however, the valve on the AFFF storage tank remained closed. There are no known incidents of foam being sprayed through the system or the system being deployed.

During mobile unit certifications and associated testing, which took place once or twice per year prior to 2016, foam was mixed outside of the SIA Fire House and would be sprayed onto the grassy area. This took place at both the old and new SIA Fire House, as indicated in Figure 4.1. A minimum of approximately 200 gallons of water per truck would be sprayed. If a truck did not pass certification in the first test, it would be sent to the Field Maintenance area for repairs before another attempt at certification near the SIA Fire House. Any testing performed at the maintenance area during equipment maintenance or repairs likely only involved spraying of water through the trucks, as indicated on Figure 4.1.

4.2.5 Local Firefighting Networks

The SIA Fire Department has mutual aid agreements with several local emergency response teams, listed below ("Spokane International Airport Fire Department," 2024b).

- City of Spokane Fire Department, Fire Station 6
- Spokane County Fire District 10 (North of the SIA)
- Spokane County Fire District 3 (South of the SIA)
- Fairchild Fire Emergency Services

These fire teams would be prepared to respond to emergency events in the other fire teams' jurisdictions if necessary, including bringing equipment onsite and utilizing their equipment and foam inventory to aid in the onsite fire team's response. According to the former SIA fire chief, in general, the SIA fire team did not respond to incidents outside of the airport. The SIA property was originally in the jurisdiction of Spokane County Fire Departments 10 and 3. Although the SIA now has its own fire department, the City of Spokane Fire Department is still required to respond to aircraft emergency incidents within or near SIA in a support capacity. Based on the interview with SIA's former fire chief, the City of Spokane Fire Department maintains a stock of 500 gallons of AFFF, comprised of 5-gallon pails, which would be brought onsite as needed. Additionally, trucks brought onsite from the City of Spokane or Spokane County would be used for foam mixing and dispensing.

As an example of the mutual aid operations, while the Fairchild AFB runway underwent a closure in 2011, some DoD emergency response operations were relocated to SIA (DVIDS, 2011).

4.3 Potential and Known Use of Firefighting Foam

AFFF can be deployed in the case of an emergency response (i.e., airplane crash), fuel spill, or fire. Foam can also be deployed during training exercises, equipment testing and calibration, or accidental spill. According to the 2023 Stormwater Pollution Prevention Plan (SWPPP), fire suppression systems are permitted for use if flammable liquid or hazardous substances are spilled at the site (Valley, 2023a).

The events discussed in Table 4.1 are also displayed in Figure 4.1. In 2019, the SIA acquired a "NoFoam" system to allow for testing of ARFF equipment without the need to create or spray foam. Between 2016 and 2019, no testing was performed at the site due to concerns with AFFF.

5.0 WASTE STREAMS

Information related to wastewater, stormwater, and solid waste associated with airport operations is provided in this section. Figure 5.1 provides an overview of the key locations discussed in this report, including the land treatment area, stormwater collection and outfall areas, along with outlines to denote which of these components are located within the site boundaries versus the property boundaries. Semiannual groundwater sampling in the stormwater recovery and land treatment area is performed in accordance with the permit specifications as outlined in State Waste Discharge Permit No. ST0045499 (Valley, 2023a).

5.1 Stormwater

Stormwater at SIA is collected from three drainage areas, which all discharge to a stormwater recovery area northeast of the runway. The three drainage areas are summarized in Exhibit 5.1 and Figure 5.1 provides a map of the stormwater infrastructure.

Collection Area	Discharge Water	Stormwater Infrastructure
Alpha	Stormwater collected from the western portion of Runway 3-21 and the northwestern portion of the airport, including the Terminal, fire department, parking structures. Operations in this area involve deicing fluid application and collection for land application.	Trench drains, pipelines, inflatable pipe plugs, outfall to unpaved channel
3-21	Stormwater collected from the eastern portion of Runway 3-21, including the landside Business Park operations extending to S Geiger Blvd. Stormwater from this area could be characterized as light industrial runoff associated with general aviation facilities and aircraft maintenance buildings.	Trench drains, pipelines, inflatable pipe plugs, outfall to unpaved channel
Perimeter Ditch	Stormwater collected from the south and southwest portion of airport and a portion of the Air National Guard property, along W Electric Ave to S Geiger Blvd. In addition to Air National Guard operations, other third-party industrial activities taking place in Aerospace Park would contribute to this stormwater collection area.	Drainage around airport to recovery area via the Perimeter Drainage outfall

Exhibit 5.1 Stormwater Management

The majority of stormwater at SIA is collected in drains and a series of swales/ditches and is conveyed to the stormwater recovery area. SIA implements a variety of stormwater best management practices (BMPs) before discharging to the stormwater recovery area, including an oil water separator for the vehicle parking areas, an oil water separator with a sand filter at the fuel storage area, and grass swales throughout the site to aid in detention and natural attenuation. A portion of the stormwater infiltrates to the subsurface through the swales, but the remainder reaches the main collection system and is discharged through the three permitted stormwater outfalls (Valley, 2023a). Part of the waste discharge permit associated with stormwater outfalls requires monthly discharge monitoring reports be submitted, reporting the flow of stormwater. Flow is measured via continuous meters installed at the Alpha and 3-21 outfalls, the Perimeter Ditch outfall flows periodically and is not required to be monitored for flow rates.

Paved areas around the airline refueler parking area and ground support equipment shop flow to a storm drain inlet and an oil water separator for pretreatment prior to entering a dry well located on the south side of the building. The floor drains and drain for the wash rack in the area flow to oil water separator that is connected to the sanitary sewer (Valley, 2023).

Based on Table 3 in the 2023 SWPPP, stormwater from the area where fuel storage and transferring, and storage of materials (including AFFF), take place would drain to the Alpha Outfall (Valley, 2023a). The stormwater recovery area includes two shallow channels; the Alpha outfall discharges to the north channel and the 3-21 outfall discharges to the south channel. The outfall for the Perimeter Drainage area discharges into the stormwater recovery area at a location north of the Alpha outfall. The north and south channels convey stormwater to three detention areas which are noted in the SWPPP. From early winter to spring the ponds fill as a result of precipitation and snowmelt that results in saturated soil conditions and a continuous baseflow through the outfalls. Between summer and late fall, the surface flows in the channels disappear due to lack of rainfall, evaporation, and infiltration resulting in the ponds becoming dry. There are no permanent receiving waters in the stormwater recovery area (Valley, 2023a). Groundwater monitoring is currently conducted twice per year in April and October in the stormwater recovery area, per the requirements of the permit. Previous quarterly groundwater monitoring has indicated little to no variation in groundwater flow direction between seasons, with groundwater flowing to the east, east-southeast (CES, 2019).

During the winter months, SIA applies surface deicers, consisting of sodium formate, sodium acetate, and potassium acetate, to control ice-buildup on paved surfaces. SIA airline operators spray aircraft deicing fluids (ADF), liquids consisting primarily of propylene glycol, onto aircraft to control ice-buildup and ensure safe operations of their aircraft pursuant to FAA mandates. ADF itself is not a source of PFAS (ITRC, 2023). SIA implemented BMPs in 2013 to recover as much aircraft deicing fluid (ADF) as feasible to minimize potential groundwater contamination. SIA operators currently use glycol recovery vehicles (GRV) to collect ADF-impacted stormwater before it reaches the stormwater collection system. GRVs are vacuum trucks used after each deicer application and the amount recovered is measured by the load when discharging from the GRVs to the storage tank. The ADF-impacted stormwater is stored in a covered holding tank at SIA during the deicing season until it is treated in the land treatment area in early spring.

During storm events, a "plug and pump" system is used to recover ADF that may reach the stormwater collection system. The application areas are isolated with inflatable pipe plugs and a 3,500-gallon suction truck removes the stormwater from those drains. With multiple GRVs operating and the "plug and pump" system, the recent glycol recovery in 2023 was 56% of the applied ADF (Valley, 2023b). SIA is authorized to discharge residual stormwater impacted with ADF to the recovery area. Stormwater discharge is measured at each of the three outfalls. During the deicing season, the Alpha and 3-21 outfalls are visually inspected for color and sheen daily and sampled for 5-day Biological Oxygen Demand weekly pursuant to the Department of Ecology permit (Valley, 2023a).

The land treatment area, as shown in Figure 2.2, is an approved natural management system to receive ADF-impacted stormwater for treatment by soil micro-organisms. ADF-impacted stormwater is land-applied to bare soil at a controlled rate that allows the soil profile to retain and treat it with little or no discharge to groundwater. The application rate is calculated for each tank load depending on the concentration of glycol in the recovered water and calibrated to truck equipment. The land treatment season begins in April or May and typically lasts 8-12 weeks. A grass or grain cover crop is planted after application and turned over the following fall to restore nutrient balance to the soil for the next application season. Soil samples are collected prior to application across the area where application occurs to monitor soil chemistry and fertility to

support the desired treatment process. Groundwater monitoring has been conducted in the land treatment area since 2013 and groundwater flow has been observed to be the north-northeast (CES, 2020).

5.2 Wastewater

It is unknown, but possible, for industrial wastewater at SIA or at any industrial or commercial location to contain trace levels of PFAS if AFFF or other PFAS-containing materials were washed into the system. Some industrial wastewater from the current SIA Fire House may have collected in floor drains and flowed through an oil water separator to the sanitary sewer. Sewer water is piped to the City of Spokane River Park Water Reclamation Facility for treatment (Valley, 2023a)

Authorized non-stormwater discharges from passenger airlines and air cargo operators at SIA may include discharges from hydrant flushing, aircraft potable water tanks, and air conditioner or air compressor condensate from airport gates. These discharges occur on the ramp and during the summer months, the water typically evaporates before reaching a storm drain inlet (Valley, 2023a).

5.3 Solid Waste

Solid waste landfills may be a source of PFAS to the environment (ITRC, 2023). There are no current solid waste landfills located on the site; however, historically, four areas on or adjacent to the property have been used as waste dumps or treatment areas as shown in Figure 5.2. The Park Dr. waste disposal area, formerly Shamrock Paving and also known as cleanup site "USAAC GEIGER FIELD GF004," was used as a dump area by the US Army during early operations at Geiger Field in the 1940s (Herrera, 2003). After dumping ceased in the area, asphalt and gravel operations started in the 1950's and lasted until Spokane County constructed the Waste-to-Energy facility. At the southwestern end of runway 3-21 on W Electric Ave, the joint fire training area served as a landfill for Geiger Field operations from 1961-1967 (OpTech, 1995). A portion of Air National Guard property adjacent to the site to the east, was used as a dump from 1960-1976. Commonly known as the Swamp Dump, this area contained oils, solvents, paints, and construction debris. In-between the two sites on SIA property, a soil remediation area was operated by Remtech, which maintained ownership of the parcel from 1991-2000. Details of Remtech operations are unknown though historical aerial imagery indicates large volumes of displaced soil.

6.0 OTHER POTENTIAL SOURCES OF PFAS

Typical processes and materials associated with airport operations and onsite businesses unrelated to airport operation or emergency response were identified and researched to determine where potential PFAS-related products may have been in use.

6.1 **On-Property Third Party Leased Facilities**

Businesses are present within the site boundary that are unrelated to the airport activities. Among these onsite businesses, some were identified with potential to contribute to PFAS releases at the site. While the use or release of PFAS from these sites has not been confirmed, these sites will be considered, and potentially further investigated, as the SIA's site investigation progresses.

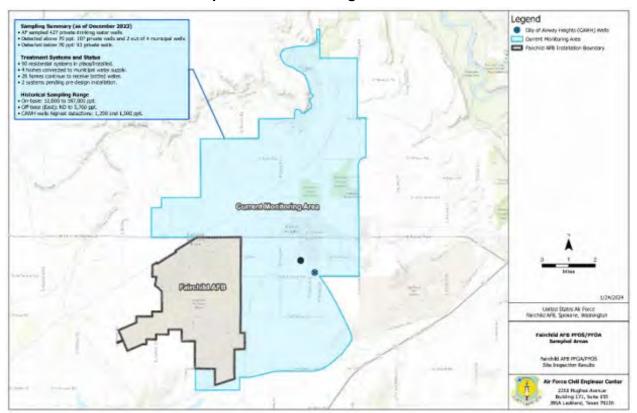
• Waste to Energy Incineration Facility (2900 S Geiger Blvd): The Waste to Energy Facility located west of the SIA runway of SIA processes up to 800 tons per day of municipal solid waste through incineration at 2,500 degrees Fahrenheit to generate electricity (City of Spokane, 2024). Based on a statewide waste characterization study, 253,000 tons of

municipal solid waste, including plastic, construction materials, metal and consumer products, were received in 2021 from across Spokane County (WA ECY, 2024). These waste types have the potential to contain PFAS (ITRC, 2023 which could persist in the incineration residues (i.e., sludge, flue gas, ash, process water)(Björklund et al., 2023). Ash from the incineration process was sent offsite to Klickitat County for disposal (City of Spokane, 2024) and is now disposed of at the Finley-Buttes Landfill in Oregon. The facility is also listed in the NPDES permit (WA0093317) for the Spokane County Regional Water Reclamation Facility (SCRWRF) as a receptor of solid waste derived from water treatment (WA ECY, 2022a).

 Waste Management (WM) Spokane Material and Recycling Technology (SMaRT) Center (2902 S Geiger Blvd): The SMaRT center collects about 25 tons per hour of mixed recyclables, including metal and plastic containers from businesses and residences in Washington, Idaho and British Columbia (Waste Management, 2024).

6.2 Potential or Known PFAS Sources Adjacent to SIA

This section discusses historical onsite land uses to identify potential historical sources outside of the scope of current airfield operations at the site. Also discussed in this section are nearby property land use and potential PFAS sources from operations based offsite and off property based off a preliminary review. None of the identified offsite properties or activities are confirmed to be additional PFAS environmental sources, yet the immediate proximity to the SIA site and potential for PFAS use are important considerations for future data interpretation. Further evaluations of PFAS sources will be conducted as more information regarding Site-specific groundwater flows is obtained to better define the relevant upgradient spatial extent.


The GEG property is neighbored by industrial properties to the northwest, south, and southeast. The nearest National Priority List (NPL) site is the Fairchild Air Force Base, located approximately 3.2 miles west of the SIA boundary. Based on an initial inventory of all properties in proximity to the site (within 1 mile) by ERIS, several businesses were identified which could work with PFAS-containing material, according to ITRC's guide on PFAS. The 1-mile radius was selected as it represents potential PFAS sources directly adjacent to the Site. The properties summarized in Table 6.1 are located directly adjacent to or in the vicinity of SIA and are depicted on Figure 6.1.

6.2.1 Investigations or Confirmed PFAS Contamination Near the Site

Fairchild AFB began using AFFF in the 1970s as a firefighting agent. AFFF continued to be used extensively at Fairchild AFB from the 1970s until 2016 to fight petroleum fires. In 2015, more environmentally responsible AFFF formulas were added to the DoD's qualified products list for firefighting agents. The Air Force began replacing both C8 with a C6 formula in August 2016. Delivery of the new foam was completed in 2017, the same year PFAS was discovered in drinking water at the base and in Airway Heights.⁶

⁶ Information provided by the Fairchild AFB Advisory Board (https://www.fairchild.af.mil/Information/Restoration-Advisory-Board/).

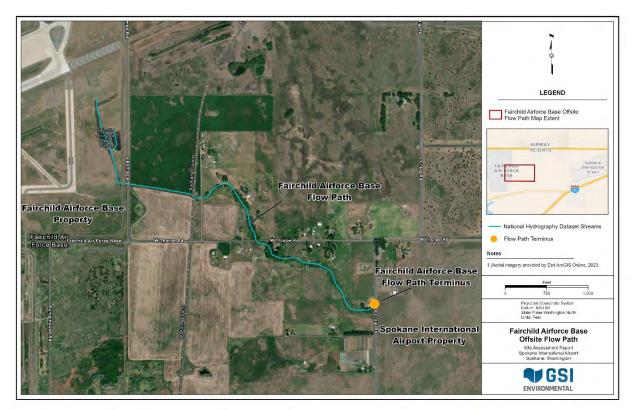


Exhibit 6.1 Map of 2024 monitoring area for Fairchild AFB⁷

Numerous studies have focused on determining the extent of PFAS contamination in groundwater on- and off-Base to support plume delineation. Initial groundwater investigations used South Hayford Road as the eastern boundary for sampling. Multiple studies have been conducted to both understand the groundwater flow directions both on- and off-Base. A recent synoptic well gauging event (SWGE) for two of the hydrostratigraphic units was conducted to support determination of highly localized groundwater flow directions and builds upon previously collected SWGE data (Tehama, LLC, 2019). Current efforts announced for the 2024 sampling campaign now extend the PFAS investigation further east towards SIA (Exhibit 6.1). In addition, documentation shows stormwater conveyance from the west side of the base flowing into Willow Creek (also identified by Wurtsmith AFB as "No Name Creek") which proceeds eastward toward South Craig Road and onto SIA property near Parcels 14022.0601 and 14022.0501 (see document provided on 12 June 2024 by Fairchild AFB in Appendix B.1 and Exhibit 6.2). The results from the investigation to be completed this summer will be critical in providing information regarding the potential for PFAS contaminated groundwater from Fairchild AFB migrating toward or onto SIA property.

⁷ Image source: <u>https://www.fairchild.af.mil/Portals/23/Capture_1.PNG</u>

Exhibit 6.2 Stormwater Flow Path from Fairchild AFB Toward SIA

7.0 HISTORICAL ONSITE PFAS DATA

PFAS investigations were conducted on SIA property from 2017 to 2019. The sampling in 2017 was conducted by AECOM, and the follow-on data were conducted by Spokane Environmental Solutions (SES).

Samples collected between 2017 and 2019 were analyzed by ALS Global Laboratories (ALS) in Kelso, Washington by USEPA Method 537M. However, as shown in Exhibit 7.1, ALS was initially not certified by Ecology for this PFAS analytical method and has evolving certifications. Importantly, ALS was not certified for PFOA and PFOS analysis until the third PFAS sampling event in August of 2018.

SDG	Analysis Date	Monitoring Wells Samples Analyzed	Analyte Specific Certification for PFAS from WA DOE ¹
K1705255	6/26/2017	Stormwater recovery area MW-3, MW-1, MW-5, and land treatment area MW-8	Not certified for any PFAS analyte.
K1712199	11/30/2017	Stormwater recovery area MW-5, MW-13, MW-14	Certified for the following analytes: 10:2 FTS, 4:2 FTS, HFPO-DA, N-Ethylperfluorooctane Sulfonamido acetic acid (N-EtFOSAA) and N- Methylperfluorooctane Sulfonamido acetic acid (NMeFOSAA)
K1807404	8/31/2018	Western peripheral MW-15, MW-16, MW-17 and Business Park MW-18	10:2 FTS, 4:2 FTS, 6:2 FTS, 8:2 FTS, HFPODA, N-Ethylperfluorooctane Sulfonamido acetic acid, EtFOSA, EtFOSE, MeFoSA, N-
K1901784	3/20/2019	Park Dr. Waste disposal area	Methylperfluorooctane Sulfonamido acetic acid, MeFOSE, PFBS, PFBA, PFDS, PFDA, PFDOA,
K1902735	4/18/2019	Electric Ave. burn pit area MW-13A, MW-13B, MW- 14B	PFHpS, PFHPA, PFHxS, PFHxA, PFNA, PFOSA, PFOS, PFOA , PFPeA, PFTDA, PFTRIA, and PFUDA

Exhibit 7.1 Analyte Certification Status for Historical Data

Notes:

1.) ALS analyte certification for PFAS compounds at time of analysis; information provided by ALS via email on 1 May 2024.

GSI Job No.: 6892 Issued: 13 August 2024

The locations of sampled wells are shown in Figure 7.2 along with their respective concentrations for PFOS and PFOA.

Reference	Sampling Date	Activities	Monitoring Well ID	Well Depth (ft bgs)	Results (ng/L) ¹	
					PFOA	PFOS
(AECOM, 2017a)	5/23/2017	Shallow groundwater samples: three collected from the stormwater recovery area and one, MW-8, collected from the land treatment area.	MW-1	15	1 <mark>30</mark>	<mark>130</mark>
			MW-3	8.5	<mark>330</mark>	<mark>93</mark>
			<mark>MW-5</mark>	<mark>20</mark>	<mark>110</mark>	<mark>140</mark>
			MW-8	25	1.4 U	9.5
(AECOM, 2017b)	11/8/2017	Shallow groundwater samples: two collected from newly installed	MW-5	20	<mark>66</mark>	<mark>120</mark>
		monitoring wells constructed east- northeast of the stormwater recovery	MW-13	11.5	85	72
		and one from the stormwater recovery area.	MW-14	16.5	<mark>350</mark>	<mark>50</mark>
(SES, 2018)	8/6/2018	Four new groundwater monitoring wells were installed near the airport fence line on the land side. Three west of the runway and one in the	MW-15	12	1.6	3.8
			MW-16	8.5	Dry	Dry
			MW-17	25	3.9	6.2
		Business Park area.	MW-18	13	22	72
(SES, 2019a)	2/28/2019	Park Drive Waste Disposal Area sampling, two samples were collected from previously installed wells.	MW-1A	83	5.9	10
			MW-1B	65	12	27
(SES, 2019b)	3/27/2019	Electric Ave. Fire Pit Training Area sampling, three samples were collected and analyzed from previously installed wells.	MW-13A	42	<mark>60</mark>	<mark>480</mark>
			MW-13B	20	<mark>1,100</mark>	<mark>5,200</mark>
			MW-14B	20.5	<mark>230</mark>	<mark>860</mark>

Exhibit 7.2 Previous On-Property PFAS Results

Notes:

1) Non-detects are indicated with a "U" flag next to the reported concentration.

Appendix B.2 provides the reports for each of these sampling events along with associated laboratory reports.

8.0 AREAS OF POTENTIAL OR KNOWN CONCERN

Given historical use of PFAS on the site and results from groundwater sampling conducted in 2017-2019, PFAS concentrations have been identified or suspected at several locations. PFAS found in the environment onsite thus far are likely due to the FAA mandated storage, handling, and testing of AFFF as part of SIA's federal mandate to maintain their Part 139 Certification and remain operational as a commercial airport.

Areas of potential or known concern were identified based on having a potential or known historical use or, as in the case of the Stormwater Recovery Area, the Park Drive Waste Disposal Area, and the southeastern portion of the Business Park, historical groundwater data where PFAS were detected. The potential and/or known PFAS areas of concern are listed below in Exhibit 8.1 and shown on Figure 8.1. Note that the map presentation of these areas is to highlight the general area and does not provide conclusive indication of known or suspected PFAS environmental contamination or a confirmed source; these spatial designations will be refined in the work plan for the Preliminary PFAS Investigation and once the initial round of soil and groundwater testing has been conducted. The extent covered on the map is not meant to reflect the exact sampling area nor that the potential release occurred over the entire space.

Exhibit 8.1 Potential or Known PFAS Areas of Concern - Summary
--

Area	Activity	Historical GW Data ^a
Air National Guard Operations Area	Training	No
Hanger 725	AFFF storage	No
Field Maintenance Area	AFFF storage	No
Current SIA Fire House	Storage and equipment washing	No
FAA Inspection and Testing	Equipment testing for compliance	No
Historical SIA Fire House	Storage and equipment washing	No
Park Drive Waste Disposal Area / Waste To Energy Plant Borrow Pit (SES, 2019a)	Waste incineration	Yes
Stormwater Recovery Area (AECOM, 2017b)	Stormwater collection and infiltration	Yes
South east area of Business Park (SES, 2018)	None identified	Yes
Joint Fire Training Area / Military Burn Pit (SES, 2019b)	Joint training with Air National Guard and Army National Guard	Yes

^a Indicates if historical groundwater data was collected in the vicinity.

9.0 REGULATORY FRAMEWORK AND PRELIMINARY CONCEPTUAL SITE MODEL

Washington State Legislature passed the Model Toxics Control Act (MTCA) which gives Ecology broad authority to investigate and cleanup sites where a release or potential release of a hazardous substances may pose a risk to human health or the environment.

PFAS were added to the hazardous substance list in WA state in 2021 and Ecology's Hazardous Waste and Toxics Reduction Program published a revised Per- and Polyfluoroalkyl Substances Chemical Action Plan (PFAS CAP) in September 2022. The PFAS CAP does not contain regulatory statutes and is advisory in nature. Instead, it establishes PFAS CAP recommendations and requirements as set forth in WAC 173-333-420 and identifies requirements enacted and signed into law by the Washington State Legislature regarding management of certain PFAS (WA ECY, 2022b). No known releases of PFAS have occurred at SIA since at least 2016.

A guidance document has been provided by Ecology to support remedial investigations of PFAS sites (WA ECY, 2023). Action levels protective of human health and ecological receptors are available for all environmental media (soil, groundwater, sediment, and surface water). Ecology provided levels for eight PFAS for the protection of human health and ten PFAS for ecological assessments. The EPA recently finalized National Primary Drinking Water Regulations establishing maximum contaminant levels (MCLs) for six PFAS: 4.0 parts per trillion for PFOA and PFOS and 10 parts per trillion for PFNA, PFHxS, and HFPO-DA (GenX). In addition, EPA set an MCL for any mixture of the four PFAS (PFHxS, PFNA, HFPO-DA, and PFBS) through establishing a MCL hazard index of 1. Washington is likely to adopt these MCLs for both public water systems and as action levels for groundwater. As the science and level of information regarding compound-specific toxicity, fate and transport are rapidly evolving, incorporating newly published scientific research with that presented in the PFAS Guidance document will be critical.

9.1 Potential Contaminant Sources, Exposure Pathways and Receptors

The development of a conceptual site model (CSM) provides a framework for evaluating the fate and transport of chemicals of potential concern (COPCs) across a site and supports further investigations and ultimately identifying an appropriate remedial action. The CSM is developed in an iterative manner to describe physical processes, chemical fate and transport, biological systems, and potential exposure pathways, based on review of relevant literature and ongoing site-specific findings. The CSM also serves to direct and focus the strategic design of the field studies and subsequent analyses. This section presents some preliminary information used to develop the CSM for the SIA site.

Review of site related information has culminated in the identification of potential and known release areas for PFAS on the airport, as discussed above in Section 8. Potential exposure pathways, exposure points, and exposure routes for contamination within the airport generally include:

- Contact with AFFF as concentrate or foam mainly applies to the remaining location where an AFFF-based suppression system is still in use (Hangar 725), and storage of current C6 AFFF in the mobile foam unit tanks and fixed foam concentrate storage tanks
- Direct contact with soil that has been contaminated by PFAS from a release
- Direct contact and/or ingestion of groundwater and/or surface water impacted due to a PFAS release

Further work is needed to determine if these exposure pathways are complete and their importance to the site will be determined during the Remedial Investigation.

From the limited groundwater data collected between 2017 and 2019, elevated PFAS concentrations were observed in shallow groundwater. Therefore, determining the site-specific connectivity of the different groundwater levels will be important for assessing the potential for any possible transport off site and whether there may have been any exposure to downstream receptors. In addition, there is no data for PFAS in soil at the airport.

Potential receptors are discussed below for both human health and ecological.

9.1.1 Human Health Receptors

Receptors with potentially complete exposure pathways include:

- any individuals with water sources that have direct connectivity to the underlying groundwater unit where PFAS are present on the airport grounds,
- any airport personnel or on-site workers engaged in construction or activities that bring them in contact with soil or groundwater on the site.

Drinking Water

GSI reviewed the WA DoH, Division of Environmental Health, Office of Drinking Water Sentry Internet Database (WA DoH, 2024) to identify water systems within a one-mile radius of the site.⁸ Limitations on interpretation of available data include well status, indicating if the well is currently in use, and well locations which are expressed by quarter-quarter sections. From the available DoH data, no active public water system wells for drinking water use were identified within the Site. The search results within a one-mile radius of the Site were compared against the Spokane

⁸ https://doh.wa.gov/data-statistical-reports/environmental-health/drinking-water-system-data

County Southwest Area Water Districts map (Spokane County, 2024), identifying nine potentially active wells serving motels, mobile home parks, apartments, and subdivisions.

According to the WA DoH Washington Tracking Network for PFAS⁹ the two public water systems with publicly available results nearest the Site, Patterson Addition and Sleepy Hollow Apartments, did not report detections of PFAS from September 2023 sampling. Patterson Addition (Water System ID 66565) is approximately one-half mile south of the Site at Highway 90 and S Fan Rd with one reported active well. Sleepy Hollow Apartments (Water System ID 803458) are approximately one-half mile east-northeast of the Site on S. Geiger Blvd. north of Highway 2 with one reported active well.

GSI reviewed the Fifth Unregulated Contaminant Monitoring Rule (UCMR 5) Data Finder for occurrences of PFAS detections in public water systems (PWS) located within, and surrounding, the site. UCMR 5 requires monitoring by certain PWSs for 29 PFAS in drinking water between 2023 and 2025. All community water systems and non-transient non-community water systems serving more than 10,000 people, all those serving between 3,300 and 10,000 people, and a representative sample of those serving fewer than 3,300 are required to monitor during a single 12-month timeframe in the three years of monitoring. The UCMR 5 did not indicate that there were any PFAS detected above the minimum reporting level for the following PWS:

- City of Airway heights
- Spokane County Water District 3 System 2
- Spokane County Water District 3 System 4

The searched PWS' had no detections of PFOS, PFOA, PFNA, PFHxS, PFHpA, or PFBS (USEPA, 2024). Three deep water wells used for drinking water at the Fairchild AFB are near the Spokane River. These wells have been tested for PFOA and PFOS with no detections as of March 2022 (AFCEC, Fairchild AFB, 2022).

PFAS in groundwater will continue to be evaluated in the Preliminary PFAS Investigation the residential use of groundwater as "tap" water will be considered a hypothetically complete exposure pathway for the purposes of conservatively evaluating potential human health risks.

<u>Soil</u>

No soil PFAS data has been collected to date within the site. Therefore, a field investigation and sampling will be required to confirm if PFAS in soil represents a complete exposure pathway. An initial soil survey in the identified areas of concern will be included in the Preliminary PFAS Investigation.

9.1.2 Ecological Receptors

Given the unique site setting and the size of the site, dividing the airport area into different ecological areas for evaluation may be appropriate. For example, there is a fence line that encloses the airside area and wildlife deterrents in place for airport security and passenger safety. Minimal animal activity is expected, and plant growth is also managed and minimized to maintain visibility. Therefore, wildlife exposure is unlikely within the fenced airside area of the airport (i.e., the airside space). Outside of the fenced area the potential receptors of concern may include:

- vegetation (e.g., shrubs and grasses),
- soil invertebrates,

⁹ https://doh.wa.gov/data-and-statistical-reports/washington-tracking-network-wtn/pfas/dashboard

- terrestrial birds,
- terrestrial small mammals,
- terrestrial small mammal predators, and
- herbivorous small mammals.

Other species that may occur at the Site but would likely be less exposed due to their greater home ranges, including resident predatory bird species. As discussed in Section 2.6, further evaluation of site associated water features is needed to determine any associated aquatic receptors. The extent to which a receptor for larger mammals is needed will be further evaluated and presented in the work plan for the remedial investigation.

10.0 SUMMARY AND CONCLUSION

The review of available information has resulted in the identification of ten potential or known PFAS areas of concern within SIA's main operational area (See also Exhibit 8.1 and Figure 8.1). These areas are listed due to storage of AFFF, potential or known usage of AFFF, and/or locations with historical PFAS data (Figure 8.1).

- A. Hanger 725, due to the presence of a foam-based fire suppression system and AFFF storage (no documentation was found of the system being deployed).
- B. Field Maintenance Area, due to AFFF storage and equipment maintenance.
- C. Current SIA Fire House, due to AFFF storage and usage as mandated by FAA to remain operational.
- D. Areas used for FAA inspections and testing as mandated to maintain Part 139 certification with the FAA.
- E. Historical SIA Fire House, due to historical AFFF storage and usage as mandated to maintain Part 139 certification with the FAA.
- F. Park Drive Waste Disposal Area / Waste to Energy Plant Borrow Pit, unknown source.
- G. Stormwater Recovery Area, due to potential PFAS-impacted stormwater collection and infiltration.
- H. Southeast area of Business Park, however there are no known AFFF activities in the immediate area, hence further investigation is needed.
- I. Air National Guard Operations Area, due to historical AFFF usage for firefighting training activities when under DoD control and mandates.
- J. Joint Fire Training Area / Military Burn Pit, due to joint training activities with AFFF, by the Airforce, SIA and the Air National Guard as mandated by federal authorities and regulations.

These areas have either confirmed PFAS in the local groundwater or have the potential to have PFAS present in the local environment due to the storage, handling, and testing of AFFF as part of SIA's federal mandate to maintain their Part 139 Certification.

These areas will be further evaluated for PFAS in groundwater and soil as part of the Preliminary PFAS Investigation stated in the EO issued by Ecology (Task 1B).

11.0 REFERENCES

- AECOM, 2017a. DRAFT -Groundwater Monitoring for Perfluorinated Chemicals.
- AECOM, 2017b. 2017 Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals.
- AFCEC, FAFB, 2022. Fairchild AFB Restoration Advisory Board (RAB) Meeting.
- ATSDR, 2022. Airway Heights Spokane County Washington PFAS Exposure Assessment.
- Björklund, S., Weidemann, E., Jansson, S., 2023. Emission of Per- and Polyfluoroalkyl Substances from a Waste-to-Energy Plant—Occurrence in Ashes, Treated Process Water, and First Observation in Flue Gas. Environ Sci Technol 57, 10089–10095. https://doi.org/10.1021/acs.est.2c08960
- Board of Spokane County Commissioners, 2004. Spokane County Zoning Code Department of Building and Planning 2022 Printing (Appendix B). Appendix B Supporting Inventory Maps.
- CES, 2020. Spokane International Airport Project Spring 2020 Land Application Site Activity Report.
- CES, 2019. Application for a State Waste Discharge Permit to Discharge Industrial Wastewater to Groundwater by Land Treatment or Application - Permit Renewal - Response to Comments.
- CES, 2018. 2018 Stormwater Pollution Prevention Plan.
- CES, 2015. 2015 Stormwater Pollution Prevention Plan.
- City of Spokane, 2024. Waste to Energy Plant [WWW Document]. URL https://my.spokanecity.org/solidwaste/waste-to-energy/ (accessed 4.18.24).
- City of Spokane, 2023. City of Spokane Water System Plan 2023.
- Deobald, W., Buchanan, J.P., 1995. Hydrogeology of the West Plains area of Spokane County, Washington. Spokane County Water Quality Management Program.
- DVIDS, 2011. Fire department -- split three ways -- protects Fairchild assets. Defense Visual Information Distribution Service.
- ERM-West, Inc., 1996. Installation Restoration Program (IRP) Final Remedial Investigation/ Feasibility Study Work Plan. 242nd Combat Communications Squadron Spokane Air National Guard Station Washington Air National Guard Spokane, Washington.
- FAA, 2023. New Military Specification for Performance-Based Standards for Fluorine-Free Aircraft Fire Fighting Foam.
- FAA, 2019a. Aqueous Film Forming Foam (AFFF) Testing at Certificated Part 139 Airports No. 19-02.
- FAA, 2019b. Aqueous Film Forming Foam (AFFF) Testing at Certificated Part 139 Airports No. 19-01.
- FAA, 2016. Federal Aviation Administration National Part 139 CertAlert No. 16-05.
- FAA, 2011. Airport Operators, FAA Airport Certification Safety Inspectors, ARFF Departments and Mutual Aid Units No. 11-02.
- FAA, 2006. Airport Operators, FAA Airport Certification Safety Inspectors.

FAA, 2004. Advisory Circular: Aircraft Fire Extinguishing Agents.

- GeoEngineers, 2021. Alternative Groundwater Supply Assessment.
- GeoEngineers Inc., 2007. Hydrogeologic Evaluation, Proposed Eater Reclamation Plant, City of Airway Heights, Report for City of Airway Heights, WA.
- GHD, 2023. Site Investigation Report Phillips 66 Facility No. 6880 Geiger Corrections Facility.
- GHD, 2018. Remedial Investigation Report.
- GSI Water Solutions Inc., INTERA Inc., GeoEngineers Inc., Carlstad Consulting, 2015. Hydrogeologic Framework and Conceptual Groundwater Flow Model, Review of Groundwater Conditions in the West Plains Area, Spokane County.
- Herrera, 2003. DERP-FUDS Site Closure Summary-Geiger Field.
- HRP Associate, 2024. Aqueous Film Forming Foam (AFFF) Fact Sheet [WWW Document]. HRP Associates. URL https://hrpassociates.com/uploads/files/AFFF_Fact_Sheet-Email.pdf?v=1621007441966 (accessed 4.15.24).
- ITRC, 2023. PFAS Technical and Regulatory Guidance Document and Fact Sheet.
- McCollum, M.B., Pritchard, C.J., 2012. Technical Memorandum to Accompany the Structural Geology Map of the West Plains Region. Eastern Washington University: Geology Dept.
- Mead, Hunt, 2014. Spokane International Airport Master Plan Chapter 7 Airport Land Use Compatibility.
- Northwest Land & Water, Inc., 2012. West Plains (WRIA 54) & Lower Hangman Creek Watershed (WRIA 56) Hydrogeologic Characterization & Monitoring Well Drilling Final Report.
- OpTech, 1995. Installation Restoration Program Preliminary Assessment Site Inspection Report Volume I.
- Pritchard, C.J., Gaylord, D.R., Adams, D.B., Ernst, S., Hermanson, M., 2020. Role of Quaternary glacial-outburst megaflood paleochannel deposits in a basalt-dominated aquifer system in the West Plains area of eastern Washington, USA. Hydrogeology Journal 28, 921–939. https://doi.org/10.1007/s10040-019-02100-1
- SES, 2019a. Limited Groundwater Assessment Park Drive Disposal Area.
- SES, 2019b. Limited Assessment of Electric Avenue Waste Disposal/Fire Pit Training Area.
- SES, 2018. 2018 Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals.
- SIA, n.d. Spokane Intl Airport > Environmental Overview [WWW Document]. URL https://spokaneairports.net/ENVIRONMENTAL-OVERVIEW (accessed 4.19.24).
- Spokane County, 2024. Spokane County Southwest Area Water Districts with 2024 Precincts.
- Spokane County, 2019. In the Matter of Amending the Airport Joint Operation Agreement Between Spokane County and this City of Spokane.
- Spokane International Airport Fire Department [WWW Document], 2024a. . Firefighting Wiki. URL https://fire.fandom.com/wiki/Spokane_International_Airport_Fire_Department (accessed 4.19.24).

Spokane International Airport Fire Department [WWW Document], 2024b. . Firefighting Wiki. URL https://fire.fandom.com/wiki/Spokane_International_Airport_Fire_Department (accessed 4.19.24).

Tehama, LLC, 2019. Fairchild Air Force Base: On-Base Groundwater Flow Directions Evaluation.

- USAAC, 1956. Geiger Field Preliminary Master Plan.
- USACE, n.d. Geiger Field FUDS Property Eligibility [WWW Document]. USACE.
- USAF, 2009. 256 CBCS moves to Fairchild.
- USAF, 2006. Army National Guard unit to move helos to Fairchild. USAF News, 92nd ARW Public Affairs.
- USEPA, 2024. Fifth Unregulated Contaminant Monitoring Rule Data Finder.
- USEPA, 2012. Environmental Impact and Benefit Assessment for the Final Effluent Limitation Guidelines and Standards for the Airport Deicing Category. Office of Water.

USEPA, 1978. SPOKANE VALLEY-RATHDRUM PRAIRIE AQUIFER Determination. F.R. 43.

- Valley, 2023a. 2023 Stormwater Pollution Prevention Plan Spokane International Airport.
- Valley, 2023b. 2023 Glycol Recovery Best Management Practices Plan.
- WA DoH, 2024. Sentry Internet.
- WA DoH, 2023. City of Airway Heights Water Quality Report 2022 Cosumer Confidence Report.
- WA ECY, 2023. Guidance for Investigating and Remediating PFAS Contamination in Washington State (No. 22- 09–058).
- WA ECY, 2022a. Fact Sheet for NPDES Permit WA0093317 Spokane County Regional Water Reclamation Facility (SCRWRF).
- WA ECY, 2022b. Per- and Polyfluoroalkyl Substances Chemical Action Plan.
- WA ECY: Nichols, 1993. Spokane Airport Stormwater System.
- WA ECY, S.W.M.-W.D. of, 2024. Waste in Washington [WWW Document]. ArcGIS StoryMaps. URL https://storymaps.arcgis.com/stories/81f7dfd33e204263b2a8cd3014b14ed4 (accessed 4.18.24).
- Waste Management, 2024. SMaRT Recycling Center Waste Management Northwest -Washington, Oregon, Idaho [WWW Document]. URL https://www.wmnorthwest.com/smartrecycling/ (accessed 4.18.24).

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

TABLES

- Table 1.1Enforcement Order Task 1A Requirements
- Table 2.1
 Listing of Parcels that Comprise SIA Property
- Table 4.1
 Summary of Known or Potential Usage of Firefighting Foam
- Table 6.1 Potential On- and Offsite Third-Party Sources of PFAS

Table 1.1. Ecology Enforcement Order (EO) Task 1A Requirements Spokane International Airport

Spokane, WA

EO Subtask	Subtask Description	Section in Report
	Legal description of the facility,	2.0 Airport Description
1. General Facility Information	Present owner and/or operator including chronological listing of past owners and/or operators,	2.1 Current Operations 2.2 Site History 2.3 Current and Historical Land Use
	Adjacent property owners,	6.2 PFAS Sources Adjacent to SIA
	Zoning designations of property and adjacent properties, and other pertinent information.	2.0 Airport Description 2.3 Current and Historical Land Use 6.0 Other Potential Sources of PFAS
2. Site History	Providing descriptions of historical, current, and future Site activities/operations	2.1 Current Operations 2.2 Site History 2.3 Current and Historical Land Use
	Historical use of Aqueous Film Forming Foam (AFFF) and their location.	4.3 Potential and Known Uses of Firefighting Foam
3. Purchase History	Purchase history of AFFF relating the brand, quantity, and date.	4.1.1 Historical Foam Transitions
	 4.1 Firefighting training areas (historical and current). 	4.2.3 Fire Training Information
	4.2 Firefighting equipment testing and maintenance areas.	4.2.4 Foam Testing and Calibration
	4.3 Disposal areas.	5.3 Solid Waste
	4.4 Stormwater drainage infrastructure and management areas receiving flows from suspected source areas.	5.1 Stormwater
	4.5 Wastewater systems used to contain discharged fire-extinguishing materials.	5.2 Wastewater
4. Suspected Source Areas (or known)	4.6 Historic and current storage areas for AFFF.	4.2.1 Fixed Foam Systems
NIOWI)	4.7 Tanks, vehicles, equipment, and distribution systems that were used to store or apply AFFF.	4.2.2 Mobile Foam Systems
	4.8 Hangars that contain AFFF fire suppression systems (historical and current).	4.2.1 Fixed Foam Systems
	4.9 Spills.	4.3 Potential and Known Uses of Firefighting Foam
	4.10 Incident response(s) that used AFFF.	4.3 Potential and Known Uses of Firefighting Foam
	4.11 Historical grading/construction projects at the Site associated with suspected source areas.	7.0 Historical Onsite PFAS Data
5. Review Data Reports	Review Data Reports from previous analysis of PFAS in soils, groundwater, surface water, and sediments along with	7.0 Historical Onsite PFAS Data
	Documentation of any remedial activities if undertaken.	7.0 Historical Onsite PFAS Data
	Develop and present a preliminary Conceptual Site Model (CSM) that describes the current understanding of contaminant release,	8.0 Areas of Potential or Known Concern
Conceptual Site Model (CSM)	Fate and transport (including migration pathways in all environmental media and identifying potential receptors), and	 2.4 Geology and Hydrogeology 8.0 Areas of Potential or Known Concern 9.0 Regulatory Framework and Preliminary Conceptual Site Model
	Site-specific concerns such as identification of natural resources and ecological receptors.	2.0 Airport Description 9.0 Regulatory Framework and Preliminary Conceptual Site Model

TABLE 2.1: Listing of Parcels that Comprise the SIA Property. Spokane International Airport

Spokane, WA

Pacel Number	Property Use	Street Address	City	Zip Code	Land Size (acres)
15344.0105	Transportation - Railroad	Unassigned Address	Medical Lake	99022	9.98
24062.0206	Vacant Land	Unassigned Address	Spokane	99224	0.66
14013.9007	Vacant Land	Unassigned Address	Spokane	99224	37.6
15341.9001	Vacant Land	14100 W MCFARLANE RD	Spokane		9.09
14011.143	Vacant Land	11205 W ELECTRIC AVE	Spokane		18.5
25272.9099	Vacant Land	Unassigned Address	Spokane	99224	7.79
25333.6001	Vacant Land	Unassigned Address	Spokane	99224	3.09
14022.0601	Vacant Land	Unassigned Address	Spokane	99224	10.2
25333.0208	Vacant Land	4119 S GEIGER BLV	Spokane	99201	2.09
15344.0102	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	9.5
14012.9001	Transportation - Aircraft	0 UNKNOWN	Spokane		0.95
15341.9009	Transportation - Aircraft	0 .VACANT LAND	Spokane		104.37
24062.901	Vacant Land	Unassigned Address	Spokane	99224	1.07
25333.0227	Vacant Land	4007 S GEIGER BLVD	Spokane		2.61
15365.1202	Transportation - Aircraft	0 UNASSIGNED ADDRESS	Spokane		534.91
24062.0143	Vacant Land	Unassigned Address	Spokane	99224	1.24
25335.0502	Vacant Land	3520 S GEIGER BLVD	Spokane		19.98
24062.0425	Vacant Land	5611 S HAYFORD RD	Spokane	99204	2.95
14012.9004	Vacant Land	Unassigned Address	Spokane	99224	35.59
24052.905	Vacant Land	Unassigned Address	Spokane	99224	0.57
25335.0503	Transportation - Aircraft	8125 W PILOT DR	Spokane		281.88
24062.0144	Vacant Land	Unassigned Address	Spokane	99224	1
15344.0108	Vacant Land	Unassigned Address	Medical Lake	99022	9.54
24062.0302	Vacant Land	Unassigned Address	Spokane	99224	2.15
14013.9008	Vacant Land	Unassigned Address	Spokane	99224	37.6
25286.1201	Transportation - Aircraft	2920 S SPOTTED RD	Spokane		918.26
15344.0111	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	4.84
25333.0223	Vacant Land	Unassigned Address	Spokane	99224	1.44
14022.0101	Vacant Land	Unassigned Address	Spokane	99224	27.6
25335.0206	Vacant Land	6801 W FLIGHTLINE BLVD	Spokane	99224	11.95
24066.9046	Transportation - Aircraft	10900 W ELECTRIC AVE	Spokane	99224	334.82
14022.0701	Vacant Land	Unassigned Address	Spokane	99224	10.1
25310.9021	Transportation - Aircraft	9000 W AIRPORT DR GAR2	Spokane	0	629.22
15344.0103	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	9.5
15342.9004	Service - Governmental	14811 W MCFARLANE RD	Spokane	99022	151.84
24062.9011	Vacant Land	Unassigned Address	Spokane	99224	0.15
15344.0113	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	9.92
24062.0142	Vacant Land	Unassigned Address	Spokane	99224	1.24
24052.9071	Transportation - Aircraft	8520 W ELECTRIC AVE	Spokane	00221	10.24
15344.0106	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	9.69
25335.0207	Transportation - Aircraft	7109 W WILL D ALTON LN	Spokane	99224	3.15
15355.9007	Transportation - Aircraft	3911 S CRAIG RD	Spokane		550.84
15341.9007	Transportation - Aircraft	0.UNKNOWN	Spokane		3.04
24062.0145	Vacant Land	Unassigned Address	Spokane	99224	1.14
14025.9004	Vacant Land	0 UNKNOWN CRAIG ST	Spokane	00227	648.74
24062.0429	Vacant Land	Unassigned Address	Spokane	99224	42.86
25333.0229	Vacant Land	Unassigned Address	Spokane	99224	1.17
24063.0504	Vacant Land	0.UNKNOWN	Spokane	00224	5.53
15344.0109	Vacant Land	Unassigned Address	Medical Lake	99022	9.54

TABLE 2.1: Listing of Parcels the Comprise the SIA Property. Spokane International Airport

Spokane, WA

Pacel Number	Property Use	Street Address	City	Zip Code	Land Size (acres)
24051.9059	Transportation - Aircraft	8314 W ELECTRIC AVE	Spokane		8.32
25333.0205	Vacant Land	Unassigned Address	Spokane	99224	0.37
24062.0303	Vacant Land	Unassigned Address	Spokane	99224	0.46
25305.9047	Transportation - Aircraft	0 ADDRESS UNKNOWN S	UNKNOWN		242.17
24052.9013	Transportation - Aircraft	9108 W ELECTRIC AVE	Spokane		18.61
14022.0501	Vacant Land	Unassigned Address	Spokane	99224	33.7
15341.9008	Vacant Land	0 .VACANT LAND	Spokane		39.89
24062.043	Vacant Land	5522 S CENTER RD	Spokane		10
15344.011	Vacant Land	Unassigned Address	Medical Lake	99022	9.69
24062.0426	Vacant Land	10903 W ELECTRIC AVE	Spokane		0.67
14022.9002	Vacant Land	Unassigned Address	Spokane	99224	39.09
15344.0104	Transportation - Aircraft	Unassigned Address	Medical Lake	99022	9.84
25320.1101	Transportation - Aircraft	8520 W ELECTRIC AVE	Spokane		646.44
14013.9006	Agricultural Not Classified	Unassigned Address	Spokane	99224	34.25
24062.9019	Single Unit	10220 W ELECTRIC AVE	Spokane	99224	0.46
15342.9011	Utilities	14811 W Mcfarlane Rd	Medical Lake	99022	1.03
15344.0107	Vacant Land	Unassigned Address	Medical Lake	99022	9.69
14015.0001	Vacant Land	0 UNKNOWN	Spokane		315.39

Notes: parcel information was obtained from Spokane County Assessor's Office and Treasurer's Office (https://cp.Spokanecounty.org/scout/scoutdashboard/Default.aspx)

Table 4.1. Summary of Potential or Known Firefighting Foam Usage Areas Spokane International Airport

Spokane, WA

Location Key ¹	Year	Event Description	Potential or Known Usage ²	Receiving Collection Area
A	3/18/1994	Southwest of the runway: Airplane crash with fire ("NTSB Report 1994," 1994; "Victims Identified In Spokane Plane Crash Dc-3 Pilot Had Reported Trouble," 1994)	Potential – AFFF use in emergency response incident	Outside of Collection Areas
В	Before 1999	West of Air National Guard Property: Joint training with National Guard took place prior to 1999 in the area directly west of the Air National Guard property. Foam was sprayed during these trainings from National Guard equipment.	Known – AFFF usage over several years	3-12
с	Prior to 2016	Triangle ramp training area northeast of the runway: Water was sprayed through system components that had been previously exposed to foam to satisfy mandated FAA testing.	Potential – AFFF usage over several years	3-21
D	Prior to 2014	Southwest of the historical SIA Fire House: FAA mandated testing took place in the grassy area southwest of the previous ARFF building. During testing, limited amounts of foam were sprayed through mobile unit components to satisfy FAA requirements.	Known – AFFF usage over several years	Alpha
E	Prior to 2014	Northeast of the historical SIA Fire House: It is likely that testing of mobile units took place in the grassy area northeast of the previous ARFF building. During testing, limited amounts of foam were sprayed through mobile unit components.	Potential – AFFF usage over several years	Alpha
F	2014-2016	North of the current SIA Fire House: It is likely that testing of mobile units took place in the grassy area northeast of the current ARFF building. During FAA mandated testing, limited amounts of foam were sprayed through mobile unit components.	Known – AFFF usage over several years	Alpha, Perimeter Drainage
G	2014-2016	Southeast of the current SIA Fire House: FAA mandated testing took place in the grassy area southwest of the current ARFF building. During testing, limited amounts of foam were sprayed through mobile unit components to satisfy FAA requirements.	Known – AFFF usage over several years	Alpha, Perimeter Drainage
н	Prior to 2016	Northwest of the Control Tower (Taxiway K): Several FAA mandated inspections requiring foam to be dispersed through mobile units took place at one location within view of the control tower, east of the runway.	Known – AFFF usage over several years	3-21 and Perimeter Drainage

Notes:

1. Location Key corresponds to inset table in Figure 4.1 Locations of Potential or Known Usage of Firefighting Foam.

2. All events involved the usage of C8 foam.

TABLE 6.1: Potential On- and Offsite Third-Party Sources of PFAS Spokane International Airport

Spokane, WA

Location Key ¹	Company	Address	Description	Potential Uses of PFAS (ITRC, 2023)
A	Waste to Energy Incineration Facility	2900 S Geiger Blvd	Solid waste incineration	Polymers - Fluoropolymer films (such as FEP, PVDF) to cover solar panel collectors, electrolyte fuel cells, PTFE expansion joint materials for power plants, filtration of fly ash from stack emissions
				Nonpolymers - Fuel cell and battery electrolyte (such as the lithium salt of PFAAs)
В	Waste Management (WM) Spokane Material and Recycling Technology (SMaRT) Center	2902 S Geiger Blvd	Recycling facility	Nonpolymers - Fluorosurfactants are used to recover metals, including rare earth metals, and n-hexane from waste gases
С	International Aerospace	8510 W Electric Ave	Coatings application	Polymers - Mechanical components made of fluoropolymers (such as PTFE and PFA tubing, piping, seals, gaskets, cables, and insulators)
-	Coatings ²		J	Nonpolymers - Hydraulic fluid additives made from PFSA salts (such as PFOS at about 0.1%) to prevent evaporation, fires, and corrosion
D	Extreme Industrial Coatings	11319 Willow Ave W, Airway Heights, WA 99001	Metals coating	Nonpolymers - Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
E	Performance Pro Supply	9616 W Harlan Ln Bldg 12, Spokane, WA 99224	Insulation Materials, "Fire Block" foams	Polymer - Fluoropolymer membranes and coatings (such as PTFE, PVDF, and/or side-chain fluorinated polymers) in architectural materials (like fabrics, roofing membranes, metals, stone, tiles, concrete, radomes); adhesives, seals, caulks; additives in paints (for example, low- and no-VOC latex paints), varnishes, dyes, stains, sealants; surface treatment agent and laminates for conserving landmarks
				Nonpolymers - Additives in paints, coatings, and surface treatments (PASF- and fluorotelomer- based compounds, ammonium salt of PFHxA)
	Conoco Phillips Gieger Pipeline	hillips Gieger 4404 S Geiger Blvd, Spokane, WA 99224	Pipeline terminal, above ground storage	Polymer- Lining of gas pipes and insulation of cable and wire during drilling, and membranes for filtration
_				Nonpolymers- Marketed for and potential instances of use in oil well production to change the permeability of the target formation, reduce viscosity for transport, prevent evaporative loss during storage, tracers
F				Polymer- Fluoropolymers used in firefighting equipment and protective clothing (such as those woven with PTFE). Other polymer coatings using side-chain fluorinated polymers)
				Nonpolymers- Coatings and materials used as water repellents and some Class B foam (may contain PFCAs, PFSAs, and fluorotelomer-based derivatives), vapor suppression for flammable liquids (for example, gasoline storage)
G	Fisher Construction	4510 S Dowdy Rd, Spokane, WA 99224	Construction	Polymer- Fluoropolymer membranes and coatings (such as PTFE, PVDF, and/or side-chain fluorinated polymers) in architectural materials (like fabrics, roofing membranes, metals, stone, tiles, concrete, radomes); adhesives, seals, caulks; additives in paints (for example, low- and no-VOC latex paints), varnishes, dyes, stains, sealants; surface treatment agent and laminates for conserving landmarks
				Nonpolymers- Additives in paints, coatings, and surface treatments (PASF- and fluorotelomer- based compounds, ammonium salt of PFHxA)
н	Papé Machinery Construction & Forestry	6210 W Rowand Rd, Spokane, WA 99224	Construction and forestry	Polymer- Fluoropolymer membranes and coatings (such as PTFE, PVDF, and/or side-chain fluorinated polymers) in architectural materials (like fabrics, roofing membranes, metals, stone, tiles, concrete, radomes); adhesives, seals, caulks; additives in paints (for example, low- and no-VOC latex paints), varnishes, dyes, stains, sealants; surface treatment agent and laminates for conserving landmarks
				Nonpolymers- Additives in paints, coatings, and surface treatments (PASF- and fluorotelomer- based compounds, ammonium salt of PFHxA)

TABLE 6.1: Potential On- and Offsite Third-Party Sources of PFAS Spokane International Airport

Spokane, WA

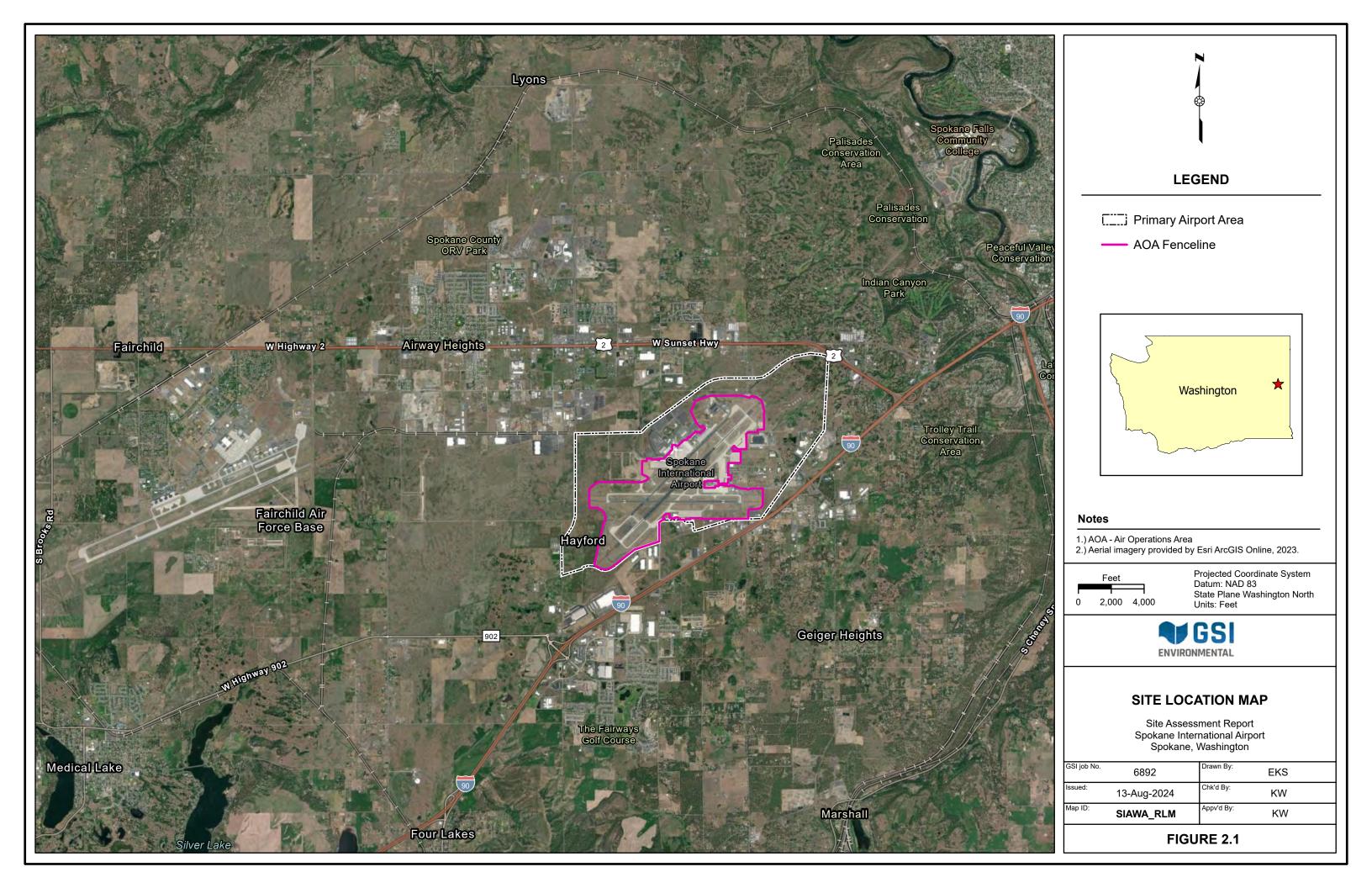
Location Key ¹	Company	Address	Description	Potential Uses of PFAS (ITRC, 2023)
I	Metals Fabrication Co.	2524 S Hayford Rd, Spokane, WA 99001	Metal fabrication	Nonpolymers- Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
J	Seaport Steel Building	2634 S Hayden Rd, Airway Heights, WA 99001	Metal fabrication	Nonpolymers- Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
к	Spokane Metals LLC	11315 Willow Ave W, Airway Heights, WA 99001	Metal fabrication	Nonpolymers- Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
L	Wilson Construction	ilson Construction 4510 S Ben Franklin Ln, Spokane, WA 99224	Construction	Polymer- Fluoropolymer membranes and coatings (such as PTFE, PVDF, and/or side-chain fluorinated polymers) in architectural materials (like fabrics, roofing membranes, metals, stone, tiles, concrete, radomes); adhesives, seals, caulks; additives in paints (for example, low- and no-VOC latex paints), varnishes, dyes, stains, sealants; surface treatment agent and laminates for conserving landmarks
				Nonpolymers- Additives in paints, coatings, and surface treatments (PASF- and fluorotelomer- based compounds, ammonium salt of PFHxA)
м	Silgan Unicep	lgan Unicep 4122 S Grove Rd, Spokane, WA 99224	Single use plastic packaging manufacturer	Polymer - Fluoropolymers (such as PTFE) are used as processing aids, as a raw material in plastics and rubber production, and as an intermediate material. Used in molded material production to enable easy release and reduce imperfections, polymer processing aids
				Nonpolymers - Surface tension reduction for foams, etching of plastic, and production of rubber
Ν	Alloy Trailers, Inc.	S 3025 Geiger Blvd, Spokane, WA 99224	Former trailer manufacturing	Nonpolymers - Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
0	Wear Tech	8021 W Sunset Hwy, Spokane, WA 99224	Water and heat resistant metals casting	Nonpolymers - Wetting agent, mist suppression for harmful vapors, and surfactants (may include potassium, lithium, diethanolamine and ammonium salts of PFOS or 6:2 FTS)
				Polymer- Fluoropolymers used in firefighting equipment and protective clothing (such as those woven with PTFE). Other polymer coatings using side-chain fluorinated polymers)
Р	Spokane Fire Department Station #6	1615 S Spotted Rd, Spokane, WA 99224	Fire department	Nonpolymers- Coatings and materials used as water repellents and some Class B foam (may contain PFCAs, PFSAs, and fluorotelomer-based derivatives), vapor suppression for flammable liquids (for example, gasoline storage)
Q	Reliance Trailer company	3025 South Geiger Blvd, Spokane, Washington 99224	Trailer manufacturing	Polymer - Fluoropolymer membranes and coatings (such as PTFE, PVDF, and/or side-chain fluorinated polymers) in architectural materials (like fabrics, roofing membranes, metals, stone, tiles, concrete, radomes); adhesives, seals, caulks; additives in paints (for example, low- and no-VOC latex paints), varnishes, dyes, stains, sealants; surface treatment agent and laminates for conserving landmarks
				Nonpolymers - Additives in paints, coatings, and surface treatments (PASF- and fluorotelomer- based compounds, ammonium salt of PFHxA)

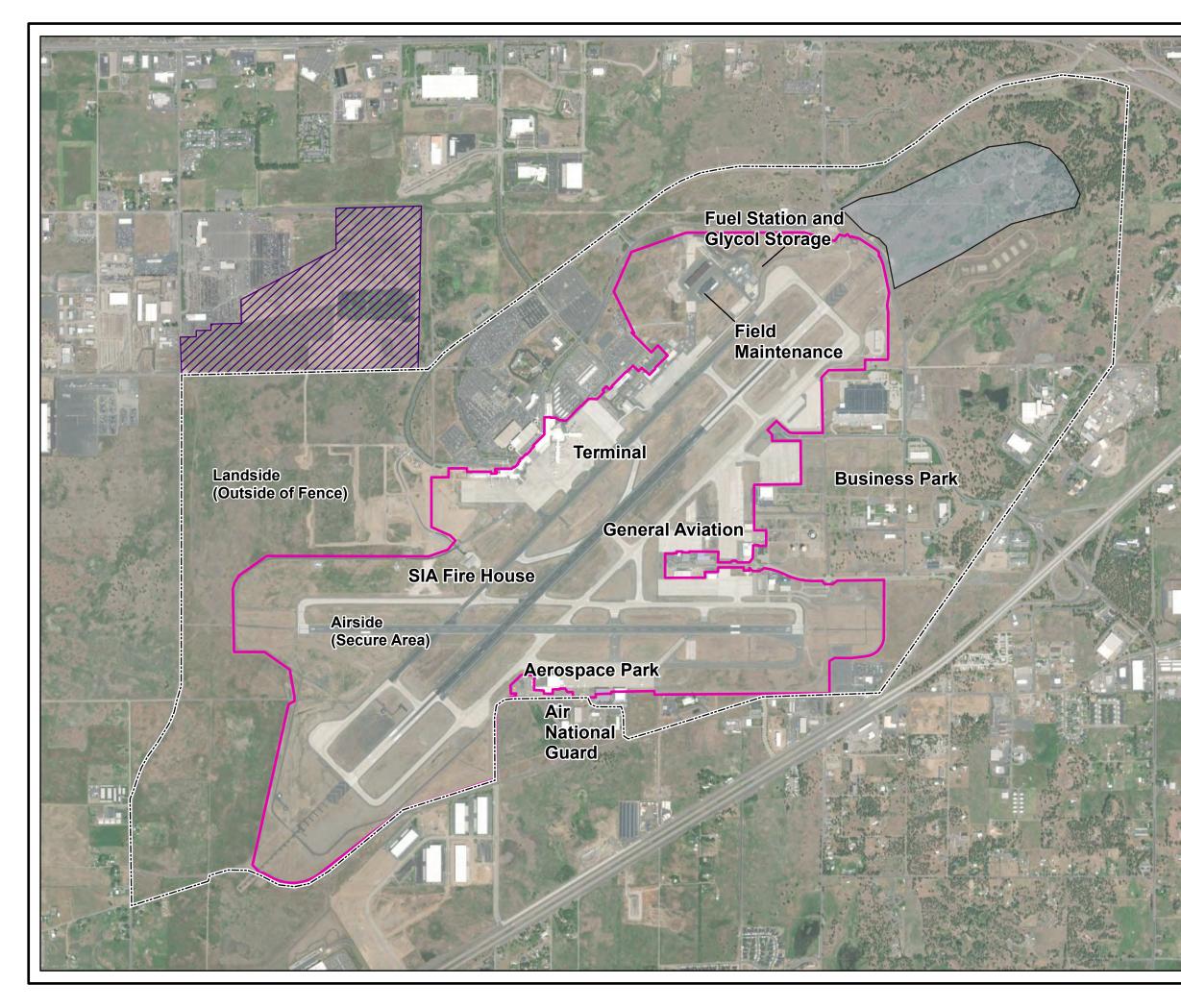
Notes:

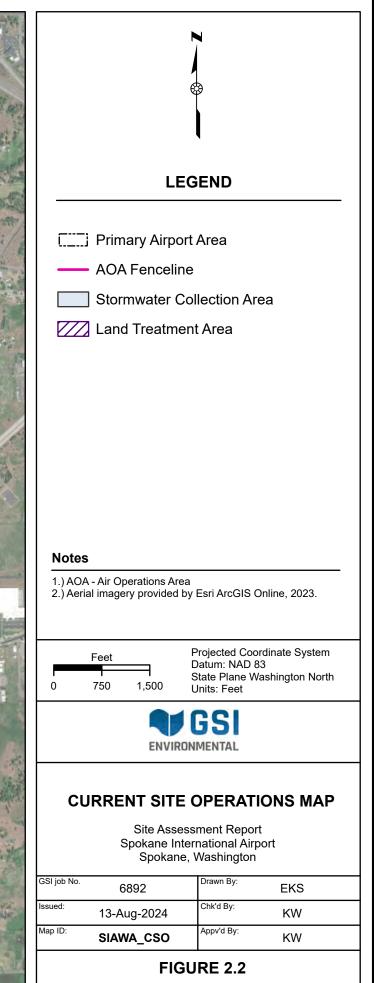
1. Location Key corresponds to inset table in Figure 6.1 Potential Third-Party PFAS Sources

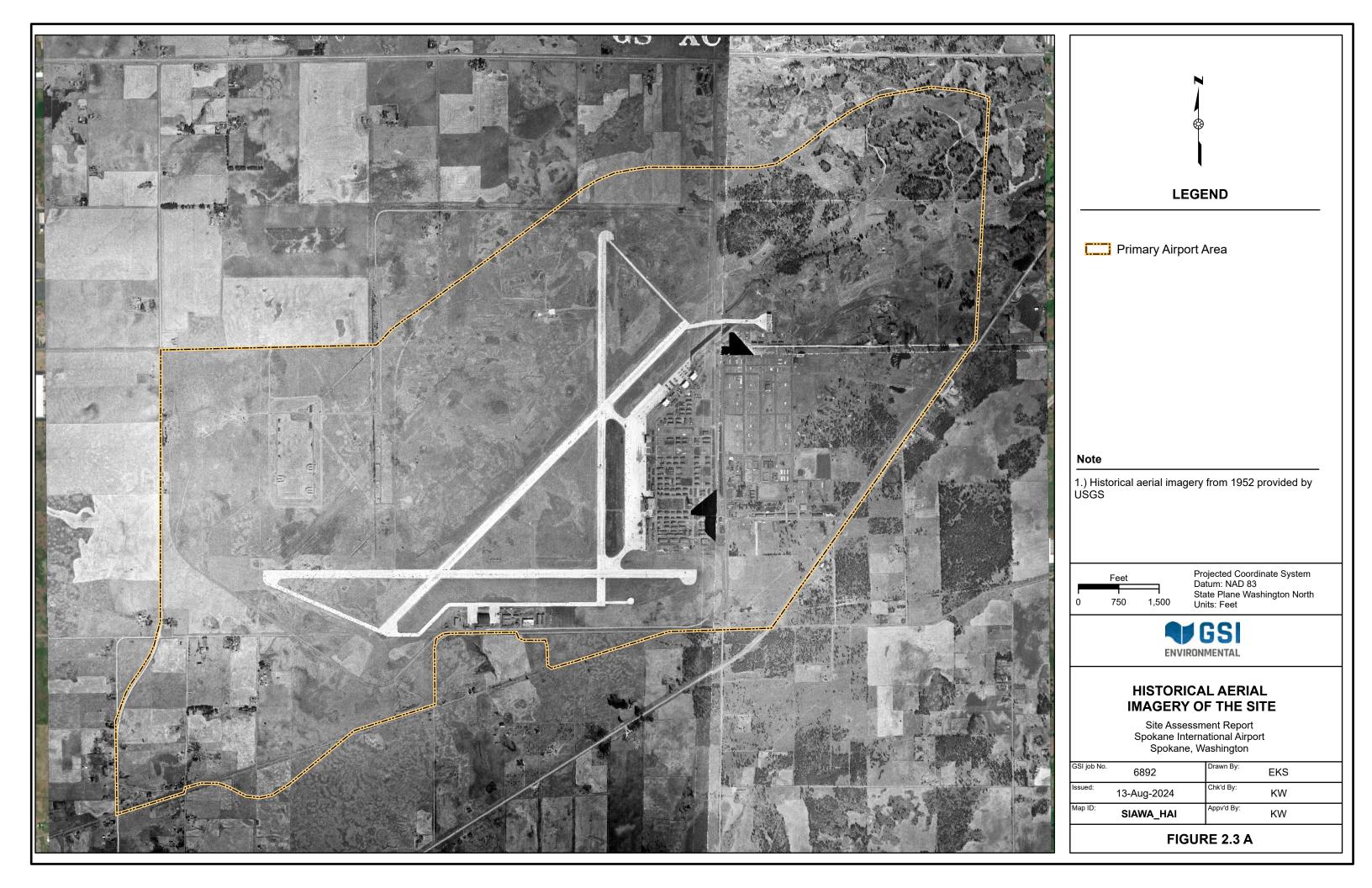
2. In addition to the potential PFAS uses listed in ITRC, application of coatings to the external surface of airplanes is expected to take place at this location

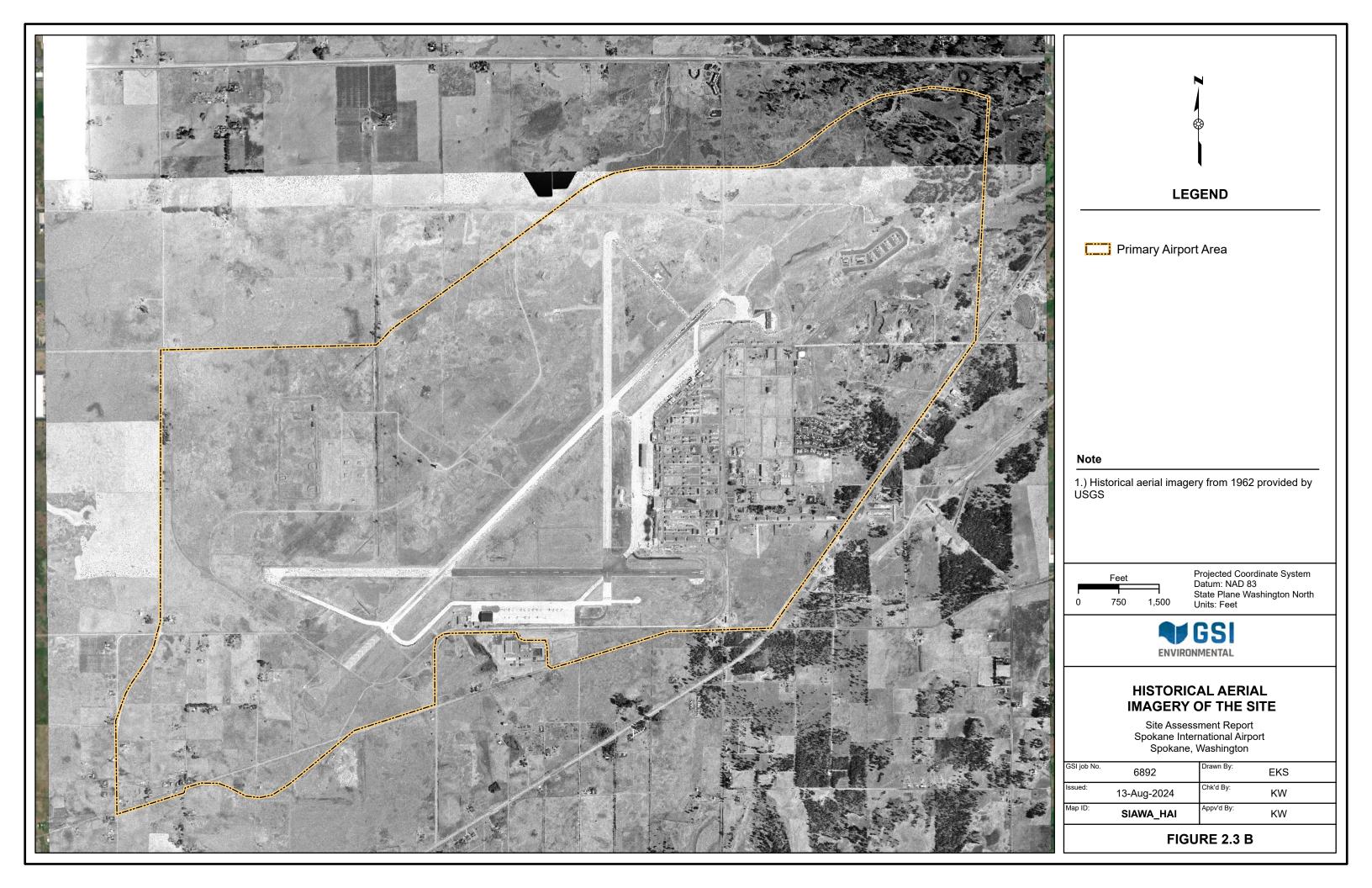
and would be an additional potential source of PFAS.

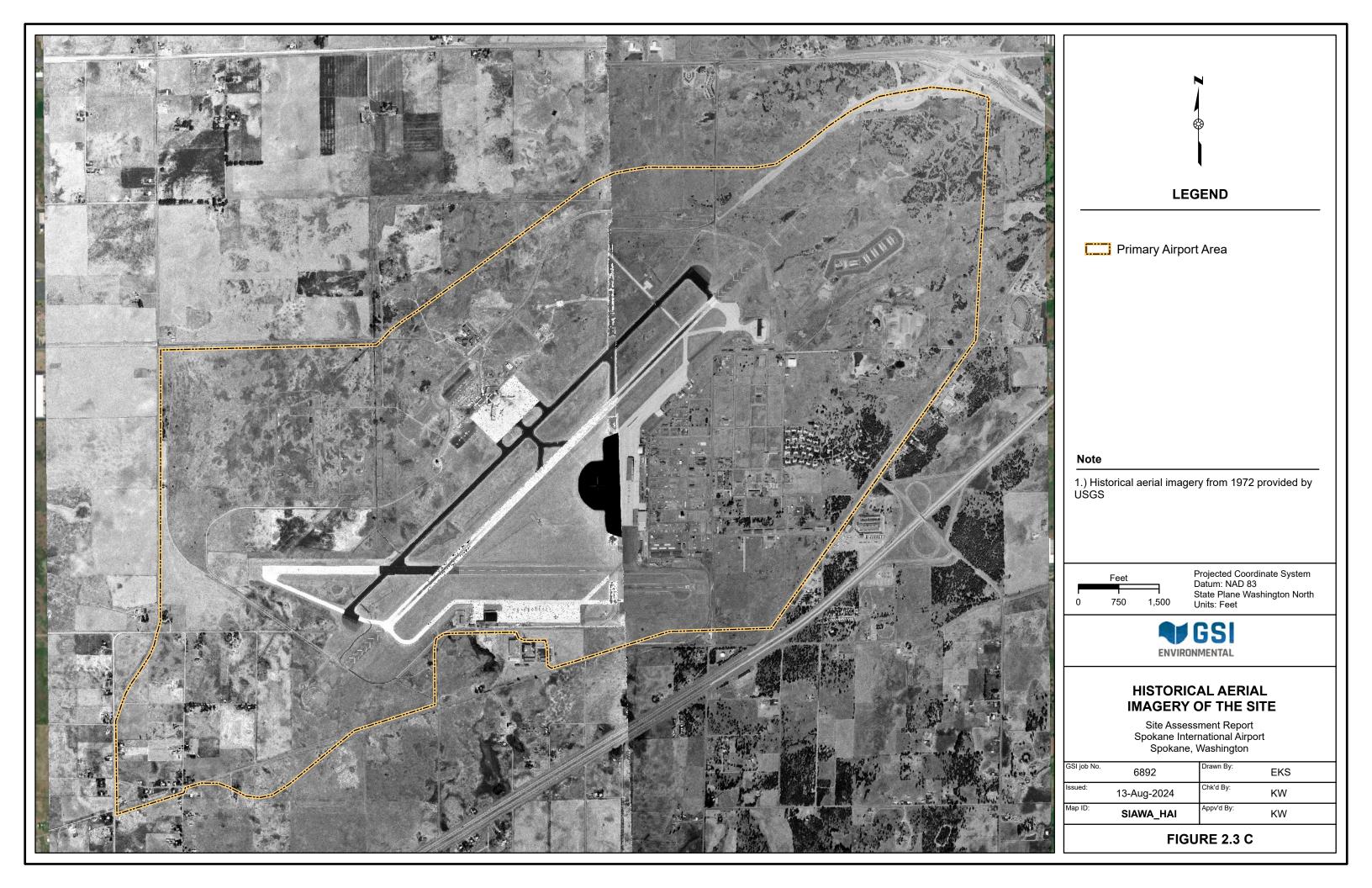

SITE ASSESSMENT REPORT

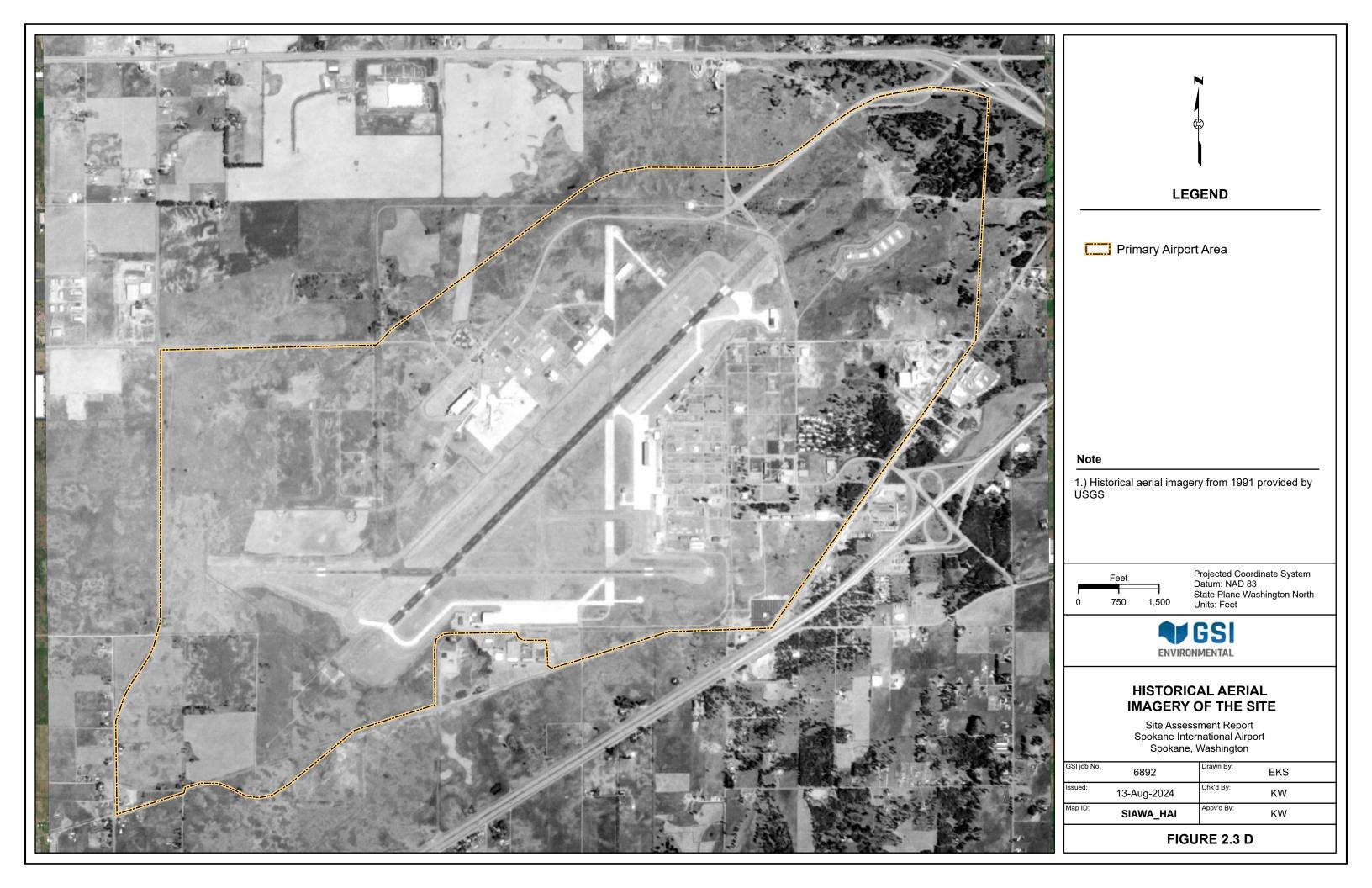

Spokane International Airport

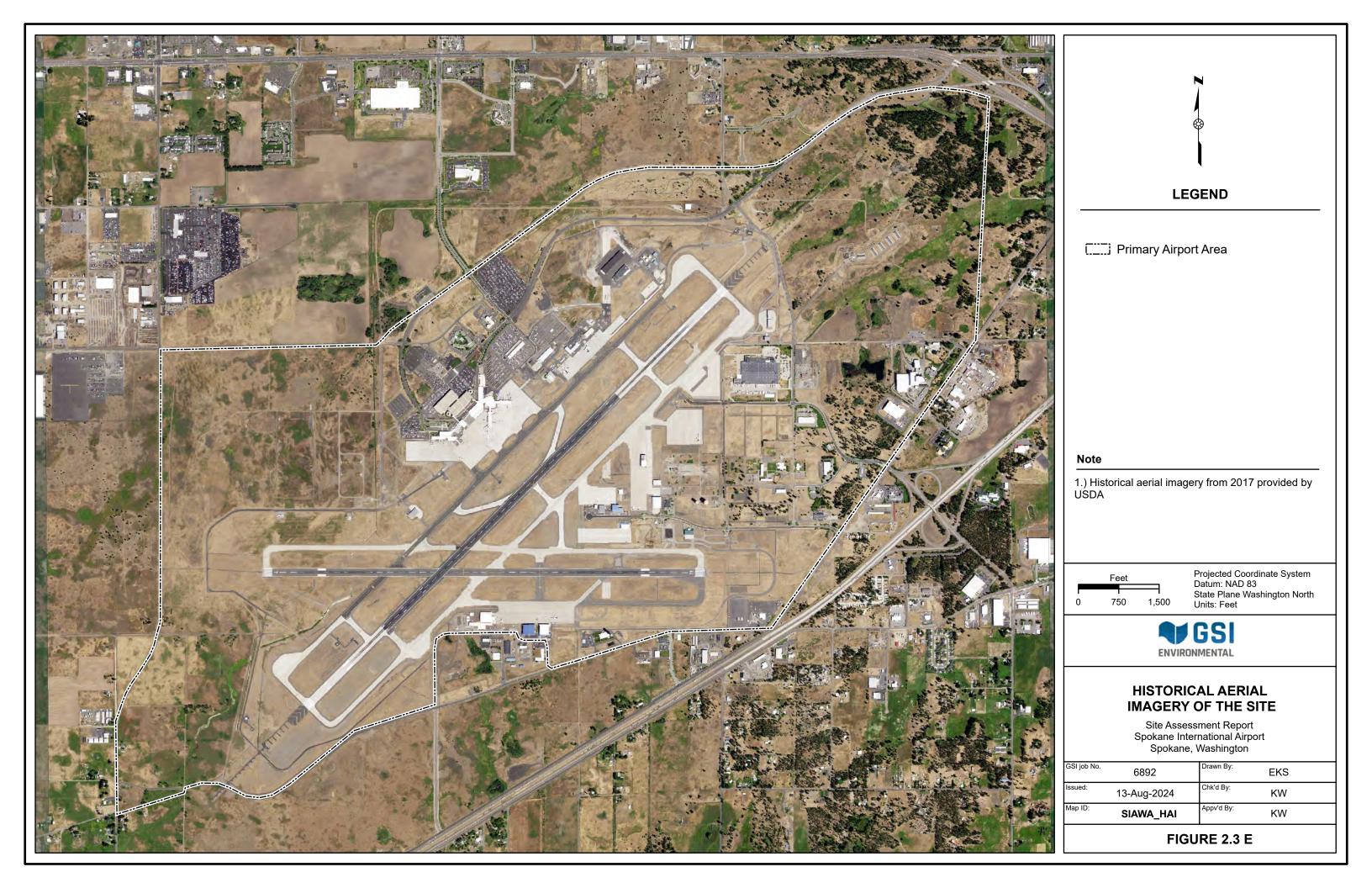

Spokane, WA

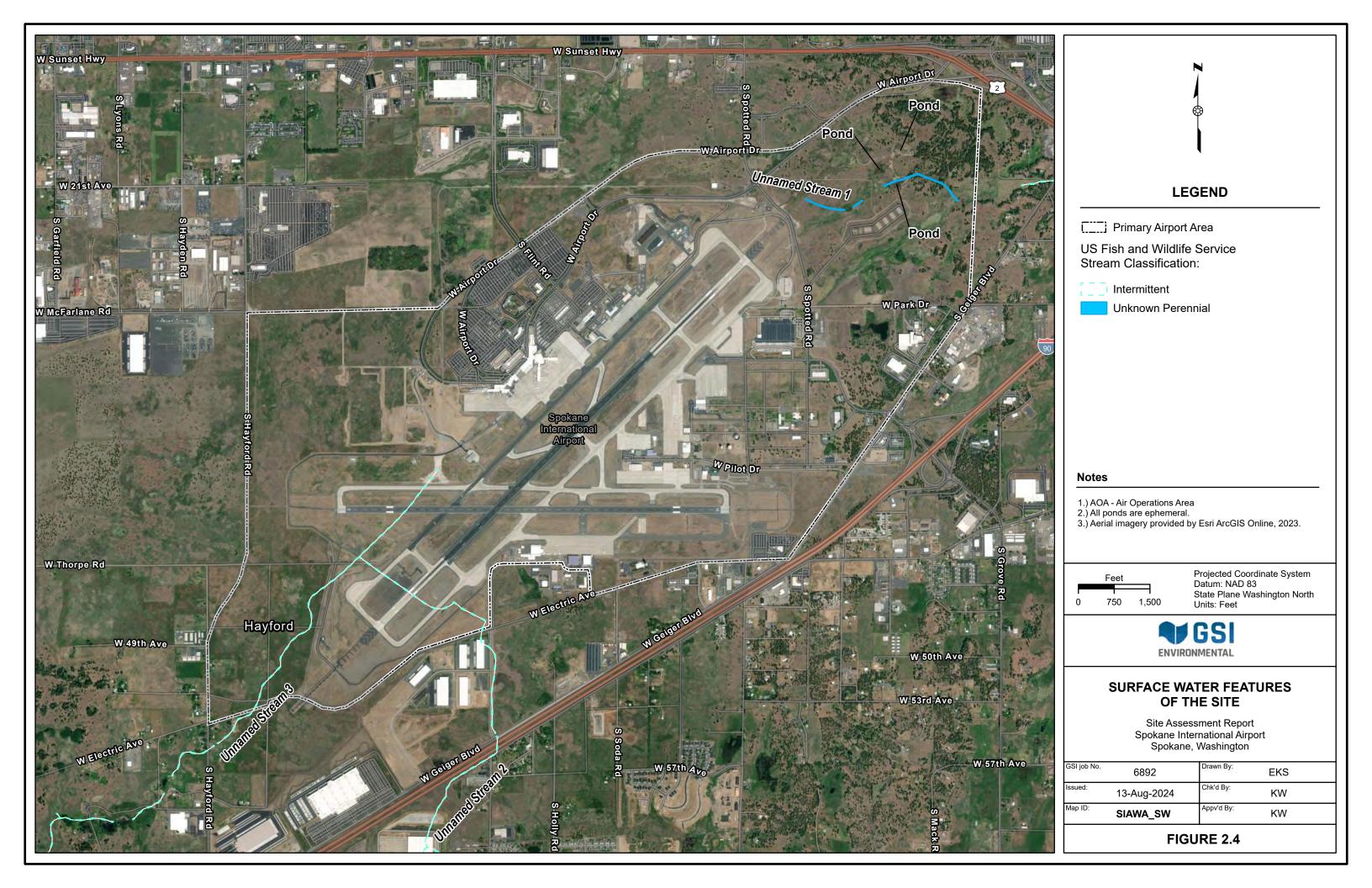

FIGURES

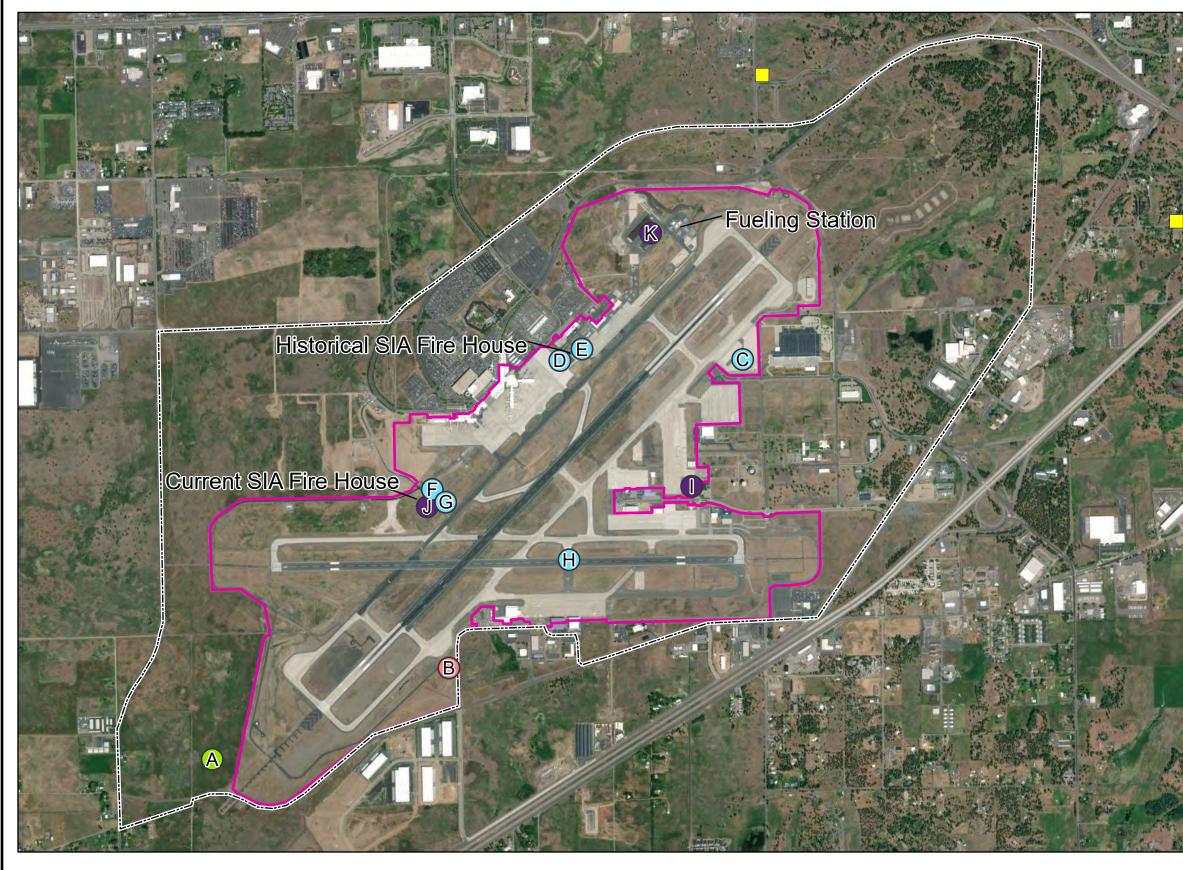

- Figure 2.1 Site Location Map
- Figure 2.2 Current Site Operations Map
- Figure 2.3 Historical Aerial Imagery of the Site
- Figure 2.4 Surface Water Features of the Site
- Figure 4.1 Locations of Known or Potential Usage of Firefighting Foam
- Figure 5.1 Stormwater Pollution Prevention Plan Vicinity and Facility Map
- Figure 5.2 Historical Landfills and Solid Waste Facilities
- Figure 6.1 Potential Third-Party PFAS Sources
- Figure 7.1 Historical Groundwater Results for PFAS
- Figure 8.1 Potential or Known PFAS Areas of Concern



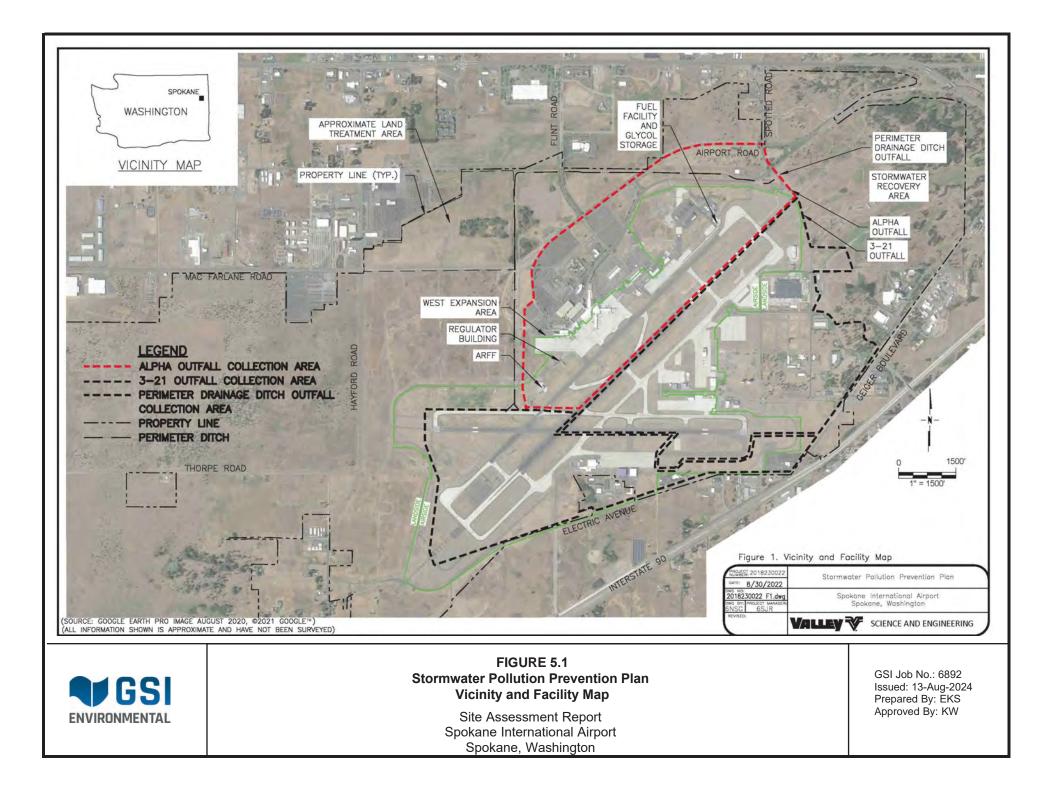


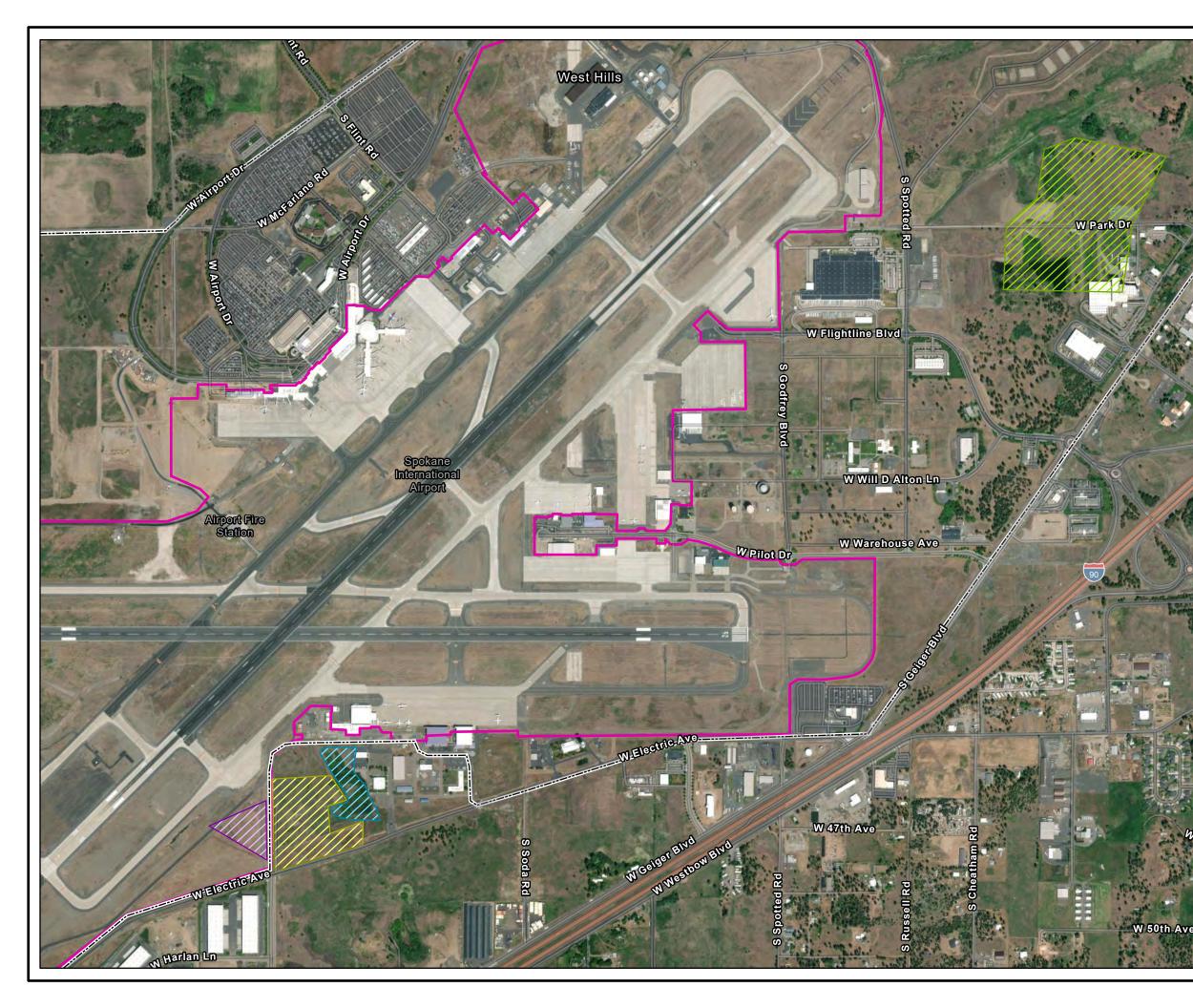


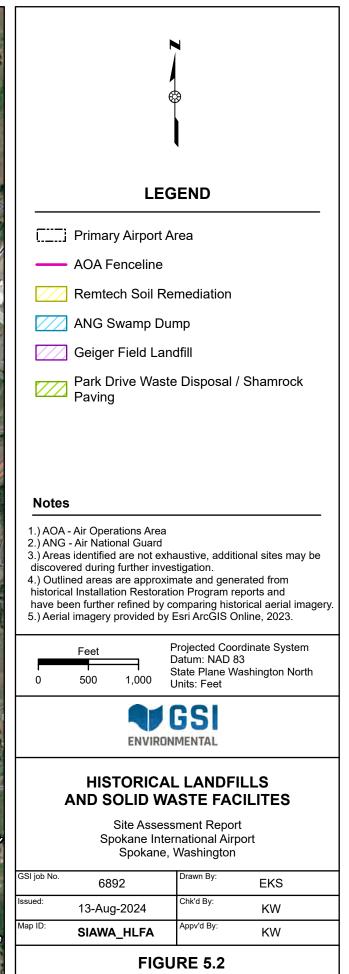


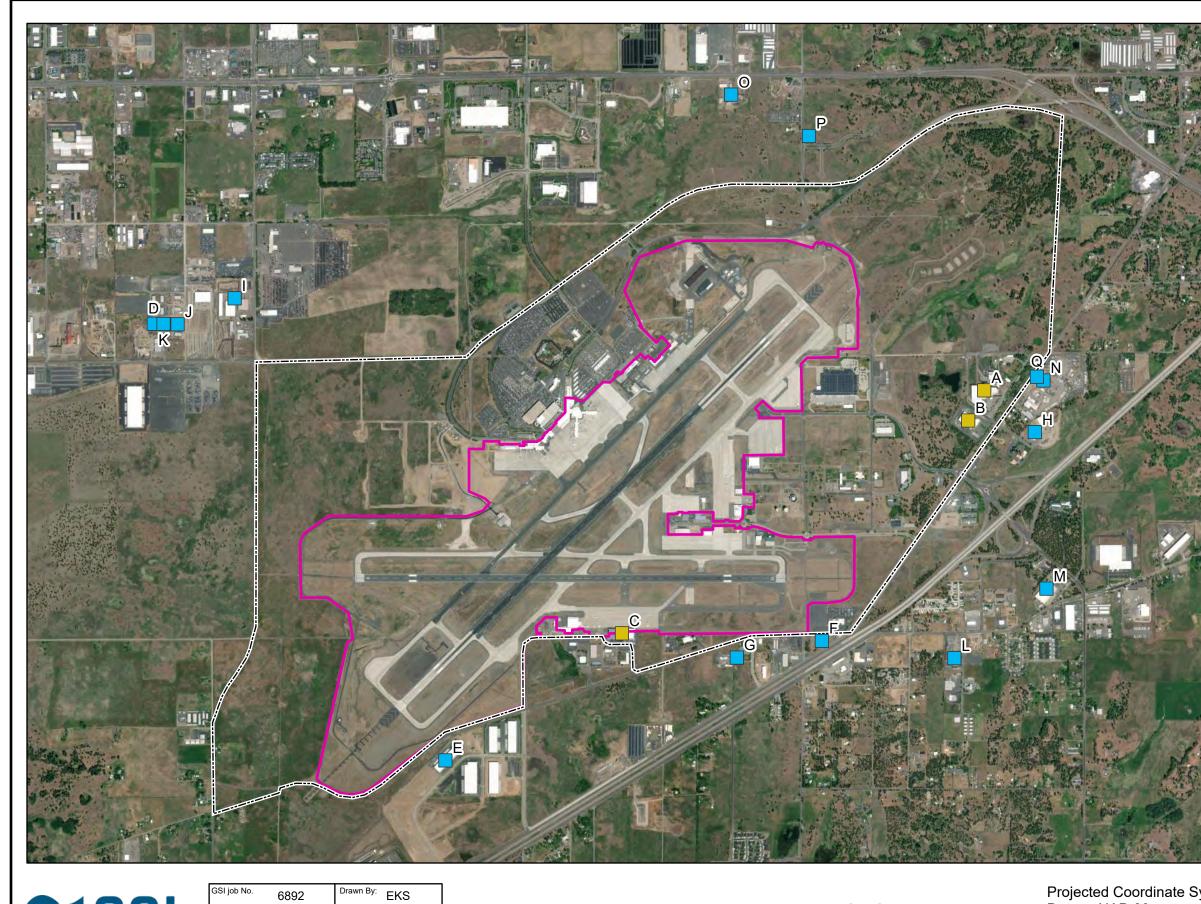





GSI	GSI job No	6892	Drawn By:	EKS
	Issued:	13-Aug-2024	Chk'd By:	KW
ENVIRONMENTAL	Map ID:	SIAWA_AFFF	Appv'd By:	KW
		FIGUF	RE 4.1	


Locations of Potential or Known Usage of Firefighting Foam


Site Assessment Report Spokane International Airport Spokane, Washington Projected Coordinate System Datum: NAD 83 State Plane Washington North Units: Feet

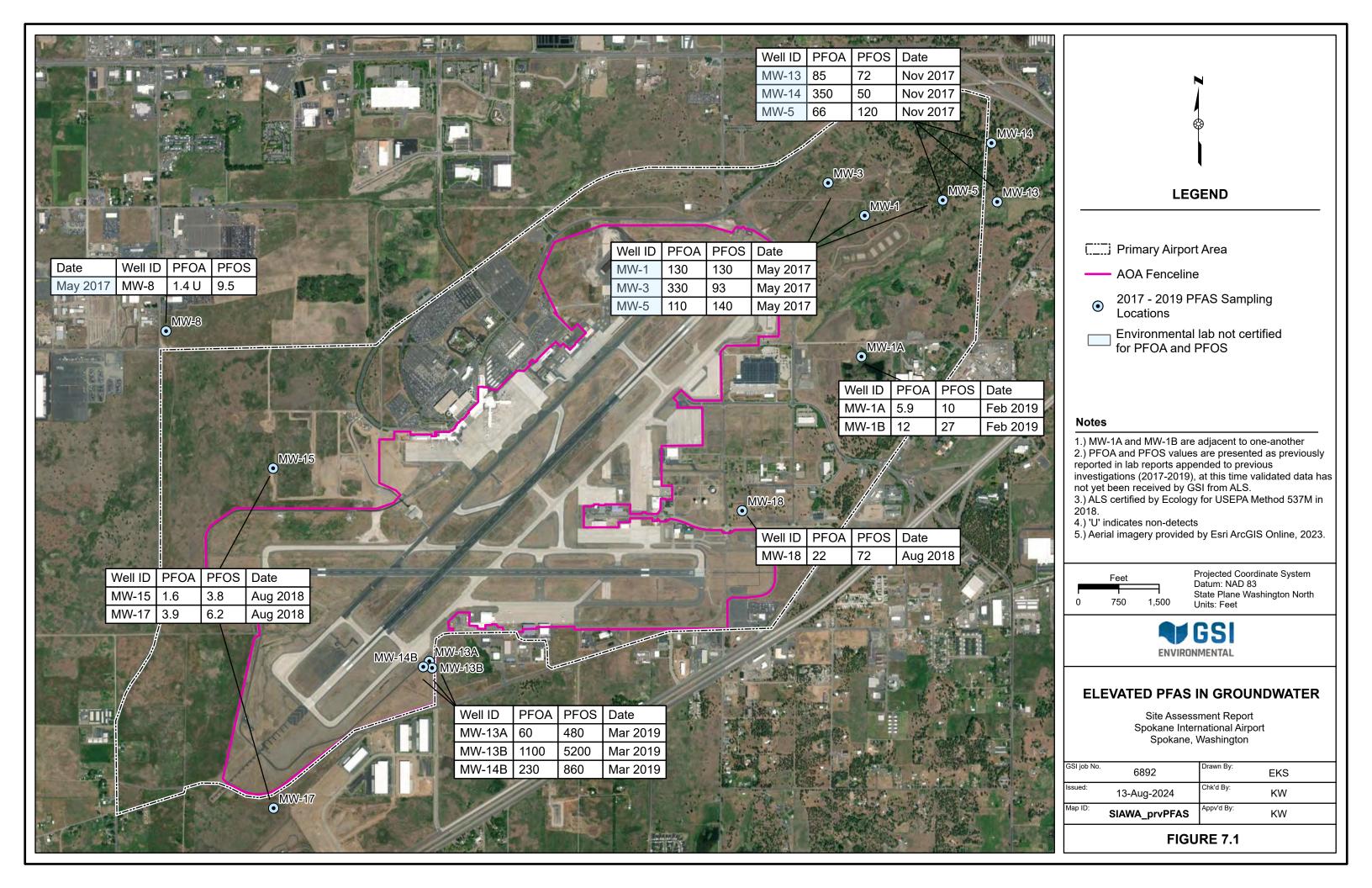

Feet 1,000 2,000

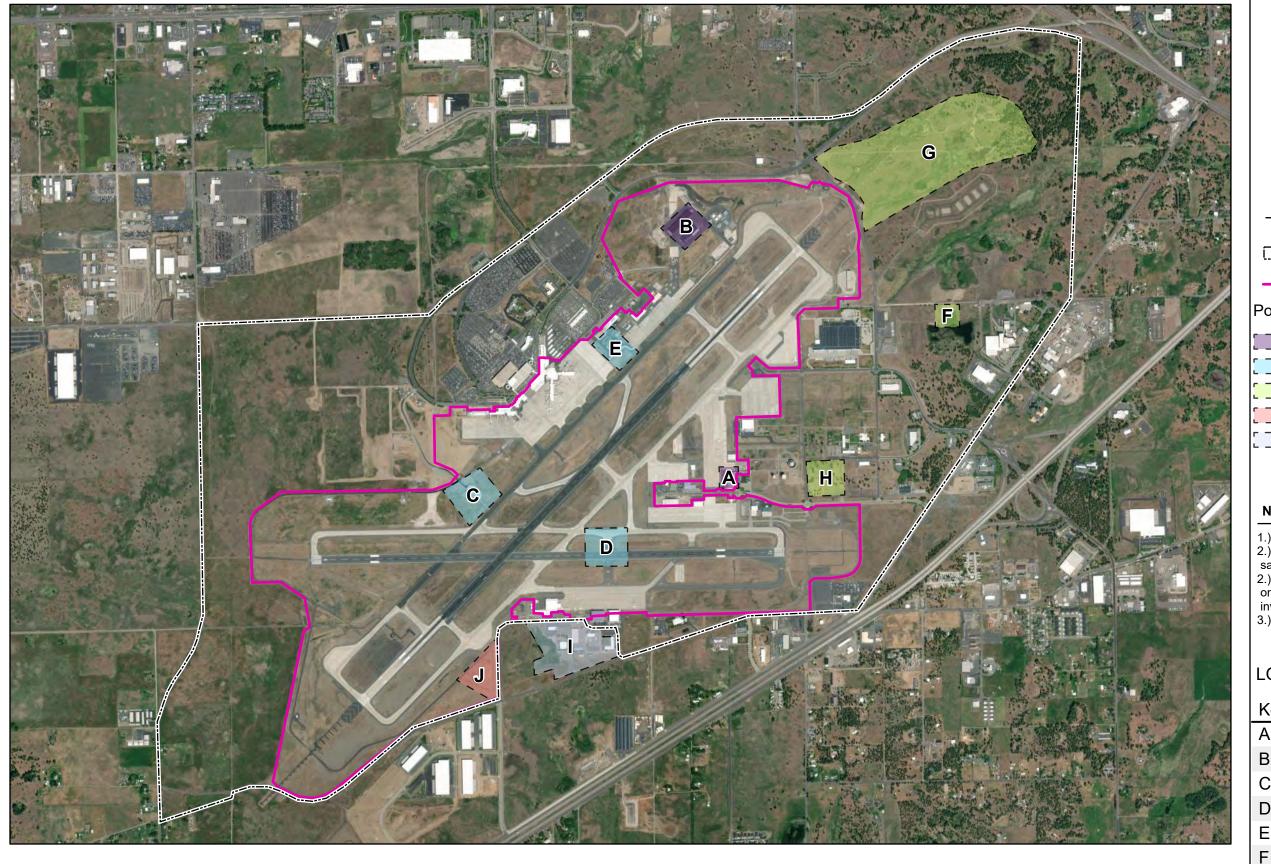
ENTIMOTICIENTAL	FIGUR	= C 1
ENVIRONMENTAL	Map ID: SIAWA_PFS2	Appv'd By
4765	Issued: 13-Aug-2024	Chk'd By:
	GSI job No. 6892	Drawn By:

Chk'd By:

Appv'd By: KW

KW


Potential Third-Party PFAS Sources


Site Assessment Report Spokane International Airport - Spokane, Washington

Projected Coordinate System Datum: NAD 83 State Plane Washington Nort Units: Feet

Feet 1,000 2,000

ALL ALL MARKEN IN ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		LEGEND
所で		
0	[] Primary Airport Area
		- AOA Fenceline
	Pote	ential PFAS Source
A STATE		Outside Primary Airport Area (14)
		Inside Primary Airport Area (3)
1	LO	CATION KEY
100	Key	Company
	A	Waste to Energy
and the second s	В	WM Recycling Facility
	С	Industrial Coatings (IAC)
	D	Extreme Industrial Coatings
-	Е	Performance Pro Supply
-	F	Conoco Phillips Geigier Pipeline
	G	Fisher Construction
1	Н	Papé Machinery Construction & Forestry
1	1	Metals Fabrication Co.
3	J	Seaport Steel Building
-	K	Spokane Metals LLC
ø .	L	Wilson Construction
100	M N	Silgan Unicep
	N O	Alloy Trailers, Inc. Wear Tech
and the second se	P	Spokane Fire Department Station #6
the second s	Q	Reliance Trailer Company
1400	Notes	· •
n th	Regula 2.) Con by ERI	ential PFAS sources as identified by Interstate Technology tory Council (ITRC) guide npany names from inventory of all properties within 1 mile S al imagery provided by Esri ArcGIS Online, 2023.

	FIGURE 8.1		
ENVIRONMENTAL	Map ID: SIAWA_AOC	Appv'd By: KW	
GS	Issued: 13-Aug-2024	Chk'd By: KW	
	GSI job No. 6892	Drawn By: EKS	
	COLiah Na	Drawn Bur	

Potential or Known PFAS Areas of Concern

Site Assessment Report Spokane International Airport Spokane, Washington

Projected Coordinate System Datum: NAD 83 State Plane Washington North Units: Feet

Feet 0 1,000 2,000

LEGEND

[___] Primary Airport Area

— AOA Fenceline

Potential Areas of Concern by Usage Type:

- AFFF Storage
- FAA Mandated Testing
- Elevated PFAS in Groundwater
- Joint Training Area
- AFFF Storage and Training

Notes

 AOA - Air Operations Area
 Elevated PFAS in groundwater as reported from sampling events from 2017-2019
 Spatial extent of highlighted areas for visual purposes only and subject to further evaluation during subsequent investigations.

3.) Aerial imagery provided by Esri ArcGIS Online, 2023.

LOCATION KEY

Key	Name
А	Hangar 725
В	Field Maintenance Building
С	Current SIA Fire House
D	FAA Inspection Testing
Е	Historical SIA Fire House
F	Park Dr. Waste Disposal Area
G	Stormwater Recovery Area
Н	Southeast Area of Business Park
I	Air National Guard
J	Joint Fire Training Area

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX A

Hydrology and Geology

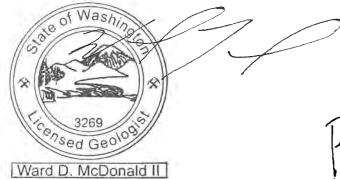
REPORT ON SPOKANE INTERNATIONAL AIRPORT - GEOLOGY AND HYDROGEOLOGY 9000 WEST AIRPORT DRIVE SPOKANE, WASHINGTON

by Haley & Aldrich, Inc. Spokane, Washington

for Spokane International Airport Felts Field & Airport Business Park Spokane, Washington

File No. 0209800-001 13 August 2024

HALEY & ALDRICH, INC. 505 WEST RIVERSIDE AVENUE, SUITE 450 SPOKANE, WA 99201 509.960.7447


SIGNATURE PAGE FOR

REPORT ON SPOKANE INTERNATIONAL AIRPORT - GEOLOGY AND HYDROGEOLOGY 9000 WEST AIRPORT DRIVE SPOKANE, WASHINGTON

PREPARED FOR

SPOKANE INTERNATIONAL AIRPORT FELTS FIELD & AIRPORT BUSINESS PARK SPOKANE, WASHINGTON

PREPARED AND APPROVED BY:

Ward McDonald, L.G. Project Manager | Environmental Geologist Haley & Aldrich, Inc.

Breeyn Greer, P.E. Senior Technical Specialist | Civil Engineer Haley & Aldrich, Inc.

List	of Tabl of Figu of App		ii ii ii			
1.	. Introduction					
2.	Site Location, Topography, and Landscape					
3.	Geo	Geologic and Hydrogeologic Framework				
	3.13.23.33.43.5	CRBG AND SEDIMENTARY INTERBEDS 3.1.1 Stratigraphic Architecture of the CRBG OVERBURDEN COLUMBIA BASIN HYDROGEOLOGIC FRAMEWORK WEST PLAINS GEOLOGY 3.4.1 West Plains Basement Hydrogeology 3.4.2 West Plains CRBG 3.4.3 Glacial Outburst Flood Deposits and Alluvium 3.4.4 Structural Geology WEST PLAINS HYDROGEOLOGY 3.5.1 CRBG Aquifer System 3.5.2 Overburden Aquifer System	3 4 5 5 5 5 6 8 9 10 10			
4.	SIA F	3.5.3 Paleochannels	12 14			
T 1	4.1 4.2 4.3 4.4	SITE GEOLOGY AND HYDROGEOLOGY WRIA 54 GEOLOGIC CROSS-SECTIONS STORMWATER RUNOFF AND PREFERENTIAL FLOW GEOCHEMICAL DATING AND LOCALIZED GROUNDWATER LEVELS 4.4.1 Marshall Creek Area 4.4.2 Central West Plains Area	14 15 16 16 17 17			
5.	Sum	mary	19			
Refe	erences	5	21			

Page

List of Tables

Table No.	Title
1	Basalt Stratigraphy of the West Plains (in-text)

List of Figures

Figure No.	Title
1	Regional Map
2	Site Plan
3	Idealized Stratigraphy of the West Plains
4	Kahle et al., 2011 - Idealized Cross-Section Within the Columbia River Basalt Group
5	USGS Burns et al., 2010 - Columbia Plateau Regional Aquifer System (CPRAS) Geologic Units and Timeline
6	USGS Kahle et al., 2011 - Structural Regions of CPRAS
7	GSI Water Solutions, Inc. et al., 2015 - Idealized Cross-Section from West to East across the West Plains
8	GSI Water Solutions, Inc. et al., 2015 - Inferred Groundwater Subsystems within the West Plains
9	GSI Water Solutions, Inc. et. al. 2015 - Map Showing Grande Ronde Outcrop in Project Area
10	McCollum and Pritchard, 2012 - Geologic Structures of the West Plains

List of Appendices

Appendix	Title
А	Washington State Department of Natural Resources Geologic Map of the Airway Heights 7.5-minute Quadrangle, Spokane County, Washington
В	Boring Logs and Well Construction
С	Spokane County Water Resources West Plains Hydrogeologic Database WRIA 54 Cross-Sections R-R' through V-V'

1. Introduction

The objective of this report is to summarize the geologic and hydrogeologic framework around the Spokane International Airport (SIA) (Figure 1) as an Appendix to the Task 1.A "Site Assessment Report for Per-and Polyfluoroalkyl Substances (PFAS)" (Site Assessment Report) deliverable under Exhibit B "Scope of work and schedule" of Enforcement Order Number DE 22585 (EO), dated 29 March 2024. We understand that the Washington State Department of Ecology (Ecology) delivered the EO to the Airport Board City of Spokane/Spokane County (Airport Board) identifying them as the potentially liable party for the SIA PFAS Site (Facility Site ID 6332493, Cleanup Site ID 16774; the Site¹). This report, as a component of the Site Assessment Report, will complete Task 1.A of the EO. This report provides a foundational understanding of the geologic and hydrogeologic framework around the Site and will help prepare a Site-specific geologic and hydrogeologic framework during the Final Remedial Investigation and Feasibility Study listed as Task 1.C in the EO.

Haley & Aldrich, Inc. (Haley & Aldrich) prepared this report by reviewing and compiling information from existing reports. This report relies mainly on data, reports, and information collected by the cited authors describing the geologic and hydrogeologic conditions around the Site and study area. This information has not been reinterpreted and will be used as a foundation to better understand the Site-specific geologic and hydrogeologic framework at SIA after future monitoring events at the Site, as required by the EO, are completed.

The study area for this report is located within the West Plains of western Spokane County, and the Site resides near the southeastern boundary of the West Plains as shown in Figure 1. The general location, Site area topography, geologic and hydrogeologic framework, and details of the limited available Site-specific geologic and hydrogeologic data are summarized in the following sections.

¹ The term 'Site' as used in this appendix refers to the main operational area within the SIA property boundary as shown in Exhibit A of the EO and presented in Figure 2 as Primary Airport Area and is not meant to define the Site boundary as defined by WAC 173-340-350. The Site boundary as defined by anywhere contamination has come to be located due to recent or historical releases at the SIA property (WAC 173-340-100) is undefined at the time of this report.

2. Site Location, Topography, and Landscape

The Primary Airport Area (Site) is located at the southwestern limit of the City of Spokane generally in Sections 5 and 6 of Township 24 North Range 42 East (T24N R42E) and Sections 28, 29, 30, 31, 32, and 33 of T25N R42E. For the purpose of this initial assessment, the Primary Airport Area is defined below and shown on Figure 2:

Northern Boundary: an unnamed road marking the northern boundary of Section 31 (T25N R42E) east from South Hayford Road to West Airport Drive; West Airport Drive east from the northern boundary of Section 31 (T25N R42E) to a point on the south side of the West Airport Drive onramp onto eastbound United States Highway 2 (US2) that lies south of the westbound US2 offramp underpass to West Airport Drive.

Eastern Boundary: the point on the south side of the West Airport Drive onramp onto eastbound US2 that lies south of the westbound US2 offramp underpass to West Airport Drive, south-southwest to the intersection of South Geiger Boulevard and West Garden Springs Road; South Geiger Boulevard south to the intersection with West Electric Avenue.

Southern Boundary: West Electric Avenue, west from the intersection with South Geiger Boulevard to the unnamed access road to 8520 West Electric Avenue; the unnamed access road to 8520 West Electric Avenue; the unnamed access road to 8520 West Electric Avenue from West Electric Avenue looping north, west, and south back to West Electric Avenue at 9198 West Electric Avenue; West Electric Avenue west to intersection with West 53rd Avenue; West 53rd Avenue; West 53rd Avenue west to South Hayford Road.

Western Boundary: South Hayford Road, north from the intersection with West 53rd Avenue, to intersection with an unnamed road marking the northern boundary of Section 31 (T25N R42E).

The topography of the Site area is a relatively flat plain, gently sloping downward from an elevation of 2,390 feet above mean sea level (amsl) in the south Site area to approximately 2,290 feet amsl in the northeast Site area (Derkey et al., 2004; Hamilton et al., 2004). The landscape within the West Plains consists of mixed semi-arid shrub steppe grasslands, sparse mixed conifer forest and shrub steppe, barren rock surfaces, agricultural land, and urban-semi urban uses (GSI Water Solutions, Inc. [GSI Water Solutions] et al., 2015). The landscape around the Site also includes stormwater infrastructure and impermeable surfaces due to outcrops.

3. Geologic and Hydrogeologic Framework

The Site area lies in the West Plains in the northeast corner of the Columbia Basin. The West Plains is a physiographic region to the west of the City of Spokane, mostly lying in western Spokane County. The West Plains is bounded in the north by the Spokane River; bounded in the east by Marshall Creek, Latah Creek (formerly Hangman Creek), and the Spokane River; bounded to the south by upland buttes; and bounded in the west by the upland buttes and Spring Creek of eastern Lincoln County (McCollum and Pritchard, 2012); see Figure 1. Hydrogeologically, the West Plains region is unique in the eastern Columbia Basin in that groundwater generally flows from southwest to northeast. The West Plains is hydrogeologically separated from the greater Columbia Basin aquifer system by a divide that trends along the upland buttes of eastern Lincoln County, south and east along the upland buttes around Medical Lake and Four Lakes (Deobald and Buchanan, 1995); see Figure 1.

The regional geology of the northeast Columbia Basin consists of Precambrian metasediment and Cretaceous to Paleogene (K-Pg) intrusive basement rock (Deobald and Buchanan, 1995). The basement rock is cut by faults recording successive phases of pre-Miocene compression and tension. Along these faults, the Precambrian and K-Pg basement rock formed rugged paleotopographic highs (Soderberg et al., 2024). As Miocene flood basalts erupted, lava filled the valleys between these paleotopographic highs, leaving basement summits peaking though the surrounding lava. These upland buttes of basement rock surrounded by flood basalt are called buried hills or steptoes (Webster and Nunez, 1982; GWMA, 2009). Pleistocene glaciolacustrine and glacial flood deposits and Holocene alluvium overly the flood basalts that onlap the steptoes (Derkey et al., 2004; Hamilton et al., 2004).

Hydrogeologically, the basement rock has low permeability. As with the greater Columbia Basin, the West Plains aquifers are contained in units of the flood basalts, called the Columbia River Basalt Group (CRBG), and the overlying unconfined Pleistocene sediment (Deobald and Buchanan, 1995). The CRBG is frequently at the surface in the West Plains where it has been scoured by Pleistocene glacial floods, referred to here generally as Missoula Floods (Kiver et al., 2006). Understanding the CRBG stratigraphy and Missoula Flood deposits, which are presented in the following sections, is crucial to understanding the West Plains hydrogeologic system.

3.1 CRBG AND SEDIMENTARY INTERBEDS

The CRBG erupted during the Miocene (Kasbohm et al., 2023) and covers an area of greater than 81,000 square miles (mi²) in Washington, Oregon, and Idaho (Reidel et al., 2013a). The greatest thickness of the CRBG is in the Pasco Basin of southeastern Washington where the CRBG is estimated to be 15,000 ft thick, but in the West Plains the CRBG thickness is less than 1,000 ft (Derkey et al., 2004; Hamilton et al., 2004; Burns et al., 2011).

The CRBG formations are formally referred to by their geographic designator followed by "Basalt." Of the seven formal formations comprising the CRBG in the Columbia Basin (Reidel et al., 2013a), only two are found in the West Plains: the Grande Ronde Basalt and the overlying Wanapum Basalt. Across the Columbia Basin, the Grande Ronde Basalt consists of 25 members (Reidel and Tolan, 2013a) and the Wanapum Basalt consists of six members (Reidel et al., 2013a). However, the CRBG thins toward the basin edges, and in the West Plains there are only three members between the Grande Ronde and Wanapum Basalts. Derkey et al., (2004) and McCollum and Hamilton (2012) identify the Wapshilla Ridge and Sentinel Bluffs Members of the Grande Ronde Basalt and the Priest Rapids Member of the

Wanapum Basalt in both outcrop and well logs (see Figure 3). Reidel (2005) further divided the Sentinel Bluffs Member into six chemically distinct compositions.

During eruptive hiatuses, fluvial, lacustrine, pedogenic, volcaniclastic debris flow, and ash-fall deposits accumulated between flood basalts. These primarily sedimentary beds interfinger with the CRBG. Generally, the term for these sediments is the Ellensburg Formation in most of Washington and the Latah Formation toward Idaho (Swanson et al., 1979; Reidel et al., 2013a). The Ellensburg and Latah Formations are composed of many formal and informal sedimentary members and beds (Swanson et al., 1979) (see Figure 3).

3.1.1 Stratigraphic Architecture of the CRBG

More than 350 lava flows comprise the CRBG (Reidel et al., 2013a), each of which represents a single outpouring of lava (Self et al., 1996). Flows range from 10-300 feet thick (Tolan et al., 1989) and show repeated stratigraphic patterns, often consisting of the following: a sparsely vesicular flow bottom; a dense, jointed, and typically non-vesicular flow interior; and a vesicular, brecciated flow top (Reidel and Tolan, 2013a) as generally shown in Figure 4.

The pattern of flow bottom, flow interior, and flow top is often complicated by inflation, a process of lava flow emplacement where hot magma injects into the interior of a cooler, previously emplaced flow (Soderberg et al., 2024). The inflation process results in compound flows consisting of several individual lava flows stacked through internal emplacement rather than vertical superposition (Self et al., 1998). Individual flows within these compound flows may lack the complete sequence of flow bottom, flow interior, and flow top. Furthermore, porous zones of vesicles may form within the usually dense, non-vesicular flow interiors, but these instances lack the brecciation found in vesicular flow tops (Goff et al., 1996; Reidel et al., 2013a). This complexity is important for understanding the position and connectivity of aquifer zones.

Aside from the process of flow inflation, each successive lava flow stacked on top of the preceding flow. Sedimentary interbeds deposited during eruptive hiatuses (Reidel et al., 1989) (see Figure 5). CRBG stratigraphy does not always consist of horizontal stacked lava flows. Lava flow deposition followed paleotopography, filling in paleo-geomorphic depressions before ponding to form horizontal strata (Reidel and Tolan, 2013). Horizontal flows were frequently cut by paleochannels (Soderberg et al., 2024) related to the paleo-Columbia River drainage (Reidel and Tolan, 2013). Where lava flows deposited in fluvial or lacustrine environments, flow bottoms commonly consist of pillow basalts (Reidel et al., 2013a) consisting of highly porous and permeable hyaloclastite (Soderberg et al., 2024). Horizontal and extensive basalt flows also are cut by vertical feeder dikes that tend to regionally mass in swarms (Reidel et al., 2013b). Dikes are considered to be hydrologic flow barriers (GWMA, 2009).

On a regional scale, sedimentary interbeds are considered confining units while CRBG flow tops and flow bottoms form aquifers (Burns et al., 2011). However, locally, sedimentary interbeds may form significant aquifers (Lite, 2013; Taylor and Gazis, 2014). The hydrogeologic unit called an interflow zone is the combination of a lava flow top, any subsequently deposited interbed sediments, and an overlying flow base of the subsequent lava flow (Reidel et al., 2003). The hydrologic significance of interflow zones is their wide range of permeabilities (Lite, 2013), cementation (Gaylord et al., 1989), and connectivity (Reidel et al., 2003). Because of variation in the permeability and connectivity of interflow zones, they are referred to in this report as aquifer zones rather than discreet aquifers.

The hydrologic significance of CRBG stratigraphic architecture is the connectivity of porous and permeable flow tops and flow bottoms (Spane, 2013; Burns et al., 2016; White et al., 2020). Despite endemic jointing, flow interiors are considered confining units (Reidel et al., 2003; Burns et al., 2016; White et al., 2020) but may transmit groundwater through structurally controlled fracture networks (Jayne and Pollyea, 2018). Similarly, the thickness, extent, pinch-out patterns, and cementation of sedimentary interbeds influence both regional and local hydrology (Lite, 2013; Burns et al., 2011; Taylor and Gazis, 2014; Burns et al., 2016).

3.2 OVERBURDEN

Near surface or surficial overburden which overlies the CRBG generally includes sedimentary deposits and sedimentary rocks varying in thickness and origin (Drost et al., 1990). Across the Columbia Basin, these deposits consist of Pliocene and Pleistocene deposits of alluvium, colluvium, eolian, glacial, lacustrine, and peat deposits (Kahle et al., 2011) (Figure 5). In the West Plains area, these sediments are restricted to Pleistocene alluvium and glacial flood sediment (Derkey et al., 2004; Hamilton et al., 2004). In this report the overburden aquifer is synonymous with alluvial aquifer.

3.3 COLUMBIA BASIN HYDROGEOLOGIC FRAMEWORK

Kahle et al. (2011) divided the hydrogeologic framework of the Columbia Basin into four general regions as shown on Figure 6. The Columbia Basin hydrogeologic units generally consist of the confining basement, a series of aquifer zones consisting of interflows divided among the CRBG formations, significant interbed confining units between the CRBG formations, and an overlying unconfined aquifer in the Pleistocene alluvium and glacial flood deposits, also known as the overburden aquifer (Kahle et al., 2011). Local groundwater flow direction is dependent on stratigraphic architecture and structure. These local variables include the thickness, lateral extent, and internal continuity of interflows; the extension or truncation of interflows based on paleotopography; the presence of dikes or faults may act as barriers or conduits; and fracture networks that may compromise the confining capacity of basalt flow interiors.

3.4 WEST PLAINS GEOLOGY

3.4.1 West Plains Basement Hydrogeology

The basement rocks within the West Plains consist of a variety of crystalline rocks of igneous and metamorphic origin that span in age over 1.4 billion years old (giga annum-Ga) (McCollum and Pritchard, 2012; GSI Water Solutions et al., 2015). These rocks originated as either sediments, which had undergone compaction and cementation of pore space through a process called diagenesis, or as magmatic (igneous) intrusions, subject to mineral recrystallization during igneous cooling and/or metamorphism. The region was subjected to tectonic compression in the Cretaceous period followed by extension in the Eocene time which resulted in several periods of igneous intrusion, folding, normal and reverse faulting, and repeated reactivation of faults during periods of tectonic activity (McCollum and Pritchard, 2012). Several of these structural features are mapped in the West Plains area and are interpreted to influence the occurrence and topography of the basement units, as well as enhance groundwater flow.

These rocks are predominantly exposed in the bedrock buttes and hills (locally termed steptoes) within and surrounding the West Plains and represent the elevated portions of ancient paleotopography that was buried by CRBG flows in the Miocene time. The basement rocks appear to underlie each geologic

unit within the West Plains. GSI Water Solutions et al. (2015) included a top of basement map using hydrographs of regional groundwater wells and geologic mapping by state and local agencies that indicates the top of bedrock elevation varies across the West Plains forming buried ridges in the subsurface that likely influence groundwater flow and aquifer compartmentalization; a general representative cross-section of buried ridges is shown in Figures 7. These buried highs appear to form the northern, southern, and western boundaries of the West Plains aquifer system, separating it from the regional Columbia Plateau Regional Aquifer System [CPRAS (GSI Water Solutions et al., 2015)].

Groundwater flow in the West Plains generally is from southwest to northeast, as opposed to a regional flow direction that is northeast to southwest in the majority of the Palouse Slope sub-province. Additionally, several northwest-southeast trending basement ridges are identified and create several sub-basins within the West Plains that influence groundwater conditions (Figure 8). GSI Water Solutions, et al. subdivided these basement ridges into four sub-basins including the Central Plains Subsystem where the Site is located. According to Figure 8, the SIA generally sits within the Medical Lake-Airway Heights Ridge and the Needham Hill Ridge creating a divide between the Central Plains Subsystem and the other subsystems within the West Plains.

3.4.2 West Plains CRBG

Two CRBG formations exist in the area: the overlying Wanapum Basalt and underlying Grande Ronde Basalt units (GSI Water Solutions et al., 2015). Individual members identified by others in the West Plains include the Priest Rapids Member of the Wanapum Basalt and the Sentinel Bluffs and Wapshilla Ridge Members of the Grande Ronde Basalt (see Figure 3).

Table 1. Basalt Stratigraphy in the West Plains		
Wanapum Basalt	Priest Rapids Member	
Cranda Danda Dasalt	Sentinel Bluffs Member	
Grande Ronde Basalt	Wapshilla Ridge Member	
Note: Derkey et al. (2004); Reidel (2005)	·	

Variations in geologic properties exist within and between individual basalt flows, as well as the occurrence of sedimentary interbeds between flows/members create a geologically complex stratigraphy that affects both horizontal and vertical heterogeneity of the basalt aquifer system of the West Plains. Identifying the areal extent and thickness of these formations is critical to understanding groundwater flow within the aquifer zones hosted in the CRBG formations. Sedimentary strata interbedded within the CRBG are collectively referred to as the Latah Formation (Figure 7).

3.4.2.1 Wapshilla Ridge Member, Grande Ronde Basalt

The lowest CRBG member in the West Plains is the Wapshilla Ridge Member of the Grande Ronde Basalt. Within the CRBG, the Wapshilla Ridge Member is the greatest volume of the Grande Ronde Basalt members and contains at least 18 individual basalt flows (Reidel and Tolan, 2013). Locally, the Wapshilla Ridge Member consists of several individual basalt flows and is only exposed in the lower reaches of incised creek valleys, such as the Deep Creek and Latah Creek valleys (Figure 9).

The Wapshilla Ridge flows were the first CRBG flows to be deposited the West Plains area and buried the existing paleotopography which was eroded into the basement rocks, filling valleys, and flowing

around ridges and peaks. These flows encountered thick deposits of Miocene-age sediments of the Latah Formation that were deposited over the basement rocks, forming extensive pillow basalt at the base of the flows (McCollum and Pritchard, 2012). A period of erosion and alluvial deposition followed emplacement of the Wapshilla Ridge flows, resulting in hundreds of feet of relief and extensive Latah Formation sediments between it and the overlying flows of the Sentinel Bluffs Member (McCollum and Hamilton, 2012). The top of the Wapshilla Ridge Member was mapped in the subsurface by Pritchard (2013) using well log data and "whole rock" geochemistry and is shown as sloping down to the east-northeast, dropping from 1,950 feet amsl at the bedrock highs in the south and west of the West Plains to lower than 1,700 feet amsl at the bottom of the Latah Creek and Spokane River Valleys.

3.4.2.2 Sentinel Bluffs Member, Grande Ronde Basalt

Basalt belonging to the Sentinel Bluffs member of the Grande Ronde Formation overlies the Wapshilla Ridge Member across the West Plains. The Sentinel Bluff Member is identified as the "upper Grande Ronde Basalt" hydrogeologic unit by GSI Water Solutions et al. (2015) and contains several interbeds of Latah Formation sediments. Each flow is bounded by a vesicular flow top and massive base that overlies either the vesicular top of the flow below or a sedimentary layer. Flow thickness ranges from 26 to 88 feet, and the vesicular flow top of the Airway Heights flow is up to 45 feet thick (Reidel, 2005). Where exposed, the three flow units have well-developed entablatures and colonnades exposed in the West Plains but can exhibit blocky jointing near the flow edges (Reidel, 2005).

The upper surface of the Sentinel Bluffs Member is mapped by Pritchard (2013) as between approximately 2,300 and 2,000 feet above amsl, except where ridges of basement rock extend above ground surface or where erosion has incised into underlying units (Figure 9). Total thickness of the Sentinel Bluffs unit can be quite variable due to irregular erosion of the upper contact and underlying topography at the time of emplacement (Reidel, 2005). The underlying Wapshilla Ridge Member flows blocked drainages and created extensive lakes, which formed lacustrine and alluvial deposits that were invaded by Sentinel Bluff flows, which "buried" into soft sediments during emplacement (McCollum and Hamilton, 2012).

3.4.2.3 Priest Rapids Member, Wanapum Basalt

The Wanapum Basalt is the uppermost CRBG formation in the West Plains and consists of one to four flows of the Priest Rapids Member emplaced approximately 14.5 to 15.3 Ma (Derkey et al., 2004). This formation is generally found between approximately 2,300 feet and 2,450 feet amsl across the West Plains and forms the capping unit that overlies all other basalt flows (SCWR, 2013). The total thickness is up to 250 feet thick (SCWR, 2011); however, it is not present in areas where the flows thin and onlap basement rocks that extend above ground surface or where this unit has been removed by erosion (SCWR, 2013). In general, the top of the Wanapum Basalt gently slopes eastward toward the Spokane River valley, and individual units dip to the east-northeast (GSI Water Solutions et al., 2015). The top of the Wanapum Basalt was heavily eroded by glacial-outburst megafloods at the end of the last glacial period; these events incised several paleochannels that subsequently were filled with later megaflood and recent alluvial sediments (see Figure 1). Some reaches of these paleochannels appear to fully incise locally through the Wanapum Basalt and into the underlying units (GSI Water Solutions et al., 2015;). Several creek channels, such as the Deep Creek, Marshall Creek, and Coulee Creek canyons, fully penetrate the Wanapum Basalt in the West Plains.

3.4.2.4 Latah Formation

Throughout the Columbia Plateau, a wide variety of sedimentary strata are interbedded within the CRBG as the lava flows buried existing sediments, dammed natural drainages, and were subjected to erosion after emplacement creating accommodation for sediments to accumulate on the surface of the flow. These sedimentary deposits collectively are referred to as the Latah Formation in eastern Washington and Idaho and are correlative to other sedimentary formations interbedded with the CRBG flows, such as the Ellensburg Formation in the western Columbia Plateau (Reidel et al., 2013).

The Latah Formation deposits in the West Plains were formed in river and lake systems prior to and after CRBG flow emplacement (GSI Water Solutions et al., 2015). The Latah Formation interbeds observed in the Palouse Slope region, including in wells drilled within the West Plains, are commonly 20 feet thick but can vary from 1 to 200 feet thick and are predominantly described as clays and silts that can locally be cemented, forming relatively hard, 0.5- to 2-foot-thick shale and siltstone layers (Northwest Land & Water, Inc. [NLW], 2011; NLW, 2012). Sandy to gravelly deposits are described throughout the Latah Formation as isolated layers within CRBG units but typically occur in direct contact with clays (NLW, 2011). Because of the variable composition of Latah Formation interbeds, they can locally behave as either aquifer or aquitard units.

Due to the nature of these deposits, they are also laterally variable in the subsurface and are shown thickening, thinning, and pinching out in cross-sections based on publicly available well logs (NLW, 2011; NLW, 2012; McCollum and Pritchard, 2012; GSI Water Solutions et al., 2015;). In the West Plains area, informal subdivisions of the Latah Formation have been variably applied based on their stratigraphic position between the CRBG unit (GSI Water Solutions et al., 2015):

- Latah I Sediments between Wanapum Basalt and Grande Ronde Basalt
- Latah II Sediments between the Sentinel Bluffs Member and Wapshilla Ridge Member of the Grande Ronde Basalt
- Latah III Sediments between the Grand Ronde Basalt and the Basement Rocks

Complications can arise when using these Latah subdivisions, because in addition to the numbered subdivisions, unnumbered interbeds can and do occur within individual CRBG units. Additionally, because they are not defined by their lithological characteristics and instead by the correct identification of the bounding CRBG units, separate named units cannot be identified where CRBG units either are missing or cannot be determined by lithological or geochemical identifiers.

3.4.3 Glacial Outburst Flood Deposits and Alluvium

Sedimentary strata overlying the CRBG in the West Plains consist predominantly of Pleistocene glacialoutburst flood deposits, Pleistocene loess, and Pleistocene to Holocene-aged (11,700 years before present to present) alluvium (GSI Water Solutions et al., 2015). During the last glacial period, the Purcell Trench lobe of the Cordilleran Ice Sheet periodically formed an ice dam near the Idaho-Montana border approximately 70 miles upstream from the West Plains and impounded glacial Lake Missoula. Between 17,500 to 14,500 years before present, this dam repeatedly failed releasing glacial-outburst megafloods that flowed down the Spokane River valley and across the West Plains and deposited high-energy flood deposits that the Spokane Valley Rathdrum Prairie Aquifer now inhabits. These megafloods produced erosional features in the underlying basalt, including steep sided canyons called "coulees," dry falls, cataracts, and potholes across the Columbia Plateau in areas that are now called the Channeled

Scablands (Baker, 2009). The megafloods also deposited widespread gravel fan and bar accumulations, gravel-dominated megaripples, and thick successions of sand, silt, and clay-rich slackwater deposits (Waitt, 2017).

GSI Water Solutions et al. (2015) subdivided these sediments into two hydrogeologic units based on their granular characteristics: coarse-grained Quaternary deposits and fine-grained Quaternary deposits. The coarse Quaternary deposits consist of silt, sand, and gravel deposited predominantly by Pleistocene glacial outburst floods and by stream reworking of flood deposits. These Quaternary deposits generally are located within and near coulees, streams, and river canyons, and steep cliffs cut into CRBG basalt and basement bedrock. Fine-grained Quaternary deposits consist predominantly of silt, silty sand, and fine, sandy loess. These materials mantle many of the hills and valleys in the northern and western portions of the West Plains and are largely absent from coulees and drainages.

Five northeast- to southwest-trending, sediment-filled paleochannels on the West Plains were carved from glacial-outburst megaflood channels trending north and east from the steptoes along the southern West Plains as shown on Figure 1 (Deobald and Buchanan, 1995; Budinger and Associates, 2001; Pritchard, 2013; Osborn et al., 2021). These paleochannels are approximately 3 to 12 miles long by 0.3 to 1.5 miles wide and can be several hundred feet deep, incising into the upper Wanapum Basalt and occasionally into the underlying Latah Formation (Latah I subdivision) and Grande Ronde Basalt (Pritchard, 2013). The sedimentary deposits that fill the West Plains paleochannels contain from several feet to greater than 300-foot-thick successions of poorly to moderately sorted, relatively clean gravelly and sandy sediment containing massive, horizontal strata, and low- to high-angle planar cross-strata (Derkey et al., 2004; GSI Water Solutions et al., 2015; Osborn et al., 2021). Paleochannel deposits generally dip 10 to 20 degrees to the west-southwest and are different in alignment from the southwest-northeast orientation of the paleochannels (Pritchard, 2013). These cross-stratified sedimentary deposits may locally influence groundwater movement.

Reworking of glacial-outburst megaflood sediments during the latest Pleistocene and Holocene produced variable alluvial and colluvial deposits across the West Plains. These post-megaflood sedimentary deposits also served as sources for eolian sand dunes and loess deposits that mantle much of the West Plains and obscure the extent of the underlying paleochannel deposits (Hamilton et al., 2004). The eolian sedimentary deposits include inches-thick to several-feet-thick accumulations of loess and northeast-trending parabolic dunes in the western West Plains (Hamilton et al., 2004).

3.4.4 Structural Geology

Surface geologic maps of the West Plains area indicate little to no major structural deformation of surficial geologic units, however, major structural features mapped outside of and shown projecting into the West Plains include the Latah Fault, St. Joe Fault, Minnie Creek Lineament, and the Jump Off Joe Fault (GSI Water Solutions et al., 2015) (Figure 10). These faults and structural features are discontinuously mapped within the underlying basement rock units and likely continue into the West Plains, influencing the distribution of geologic units, providing structural weakness for preferential erosion, and acting as pathways for groundwater flow within the basement rocks. For example, the Latah Fault is mapped following a 50-mile-long linear feature that trends north-northwest which corresponds to the valley of Latah Creek and the Spokane River and forms the eastern boundary of the West Plains (Figure 10).

While the faults exposed in basement rocks are shown to have several thousands of feet of either vertical or horizontal offset; no deformation has been observed in the exposed CRBG units within the West Plains (McCollum and Pritchard, 2012). These faults are related to pre-Miocene orogenic events that influenced the observed paleotopography that formed ridges and steptoes (Soderberg et al., 2024); this paleotopography influences regional groundwater flows.

High density fracture zones of the Cheney Fracture Zone are observed in the CRBG units to the southwest in the Cheney-Palouse Scabland Tract and have a similar orientation as mapped basement faults. This indicates that younger faults and folds associated with basement faults projected into the West Plains either are missing or overlain by the surficial cover in the West Plains region (McCollum and Pritchard, 2012).

3.5 WEST PLAINS HYDROGEOLOGY

As discussed above, the West Plains is at the northeast margin of the CPRAS and generally shares the same conceptual hydrogeology: unconfined aquifers are hosted in overburden deposits overlying the basalt and bedrock units, while generally confined aquifers are hosted in water-bearing intervals within basalt interflow zones and interbedded Latah Formation sediments (GSI Water Solutions et al., 2015). As discussed in Section 3.4, the West Plains aquifer system appears to be cut off from the larger CPRAS and is an isolated basin surrounded by basement rocks on the south and west (see Figure 8) and by the Spokane River and Latah Creek on the north and east (see Figure 1). As a result, the general groundwater flow direction in the West Plains is toward the east-northeast, as opposed to the west-southwest direction of much of the CPRAS (SCWR, 2013). Groundwater recharge is therefore dependent on local surface recharge areas, and basement highs also create sub-basins within the West Plains that may be isolated from each other (Section 3.4.1, Figure 8).

Well data indicates depth to water in the West Plains varies geographically from tens of feet to several hundred feet below ground surface (bgs) (GSI Water Solutions et al., 2015). In addition to geographic location, variability of observed groundwater elevations also is influenced by the water-bearing zone or zones that wells are completed in. Further discussion of the hydrogeology of each of these hydrogeologic units is provided below.

3.5.1 CRBG Aquifer System

Based on a review of previous studies and water level data from Spokane County, GSI Water Solutions et al. (2015) identified three basic parts of the basalt aquifer system in the West Plains generally corresponding to (from top to bottom) the Wanapum Basalt (Priest Rapids Member), the upper Grande Ronde Basalt (Sentinel Bluffs Member), and the lower Grande Ronde Basalt (Wapshilla Ridge Member). In general, aquifer zones in the CRBG are approximately 1 to 25 feet in thickness and are limited in lateral extent to less than 1 mile (SCWR, 2011; NLW, 2012). The flows also are locally interbedded with sedimentary deposits resulting in multiple "stacked" aquifers that are confined to semi-confined, forming potentially connected aquifer zones within each CRBG unit (NLW, 2012; SCWR, 2013).

Groundwater is hosted primarily in the joints, vesicles, fractures, brecciated flow tops and bottoms, and sedimentary (Latah Formation) interbeds within the interflow zones of the basalt units. Lateral conductivity in these interflow zones is dependent on the thickness of the basalt, location within a flow, and the scale and density of folds and faults. The dense basalt flow interiors, which make up 90 to 95 percent of the typical total flow volume, host limited amounts of groundwater in fully penetrating joints

and fractures (GSI Water Solutions et al., 2015) and can act as an aquitard in many cases (Lindholm and Vaccaro, 1988).

Lateral hydraulic conductivity of the flow tops and bottoms ranges between 1 x 10⁻⁶ to 1,000 feet per day (average 0.1 foot per day) (GSI Water Solutions et al., 2015). In contrast, vertical and horizontal hydraulic conductivities of the dense interiors are 6 to 9 orders of magnitude less (GSI Water Solutions et al., 2015). This implies that lateral groundwater flow in the CRBG units primarily is through the interflow zones and is therefore parallel to these units. Vertical groundwater movement is inferred to be influenced by several factors, including: fractures and joints within the dense flow interiors, at the edges of flows where interflow zones join, and/or through faults, if present. The vertical hydraulic gradient in the West Plains is predominantly downward and ranges from 0.2 to 1.2 (unitless; NLW, 2012). Additionally, modern creek valleys and paleochannels deeply dissect the CRBG, and buried basement ridges influence aquifer extents in the CRBG aquifer system.

3.5.1.1 Wanapum Basalt Aquifer

The uppermost basalt-hosted aquifer zone on the West Plains is located within the lower portion of the Priest Rapids Member of the Wanapum Basalt and locally within sand-rich interbeds of the Latah Formation interbed. Groundwater levels in the Wanapum Basalt aquifer decrease to the east, with potentiometric elevations ranging between 2,350 and 2,450 feet amsl in the western West Plains to approximately 2,300 feet amsl in the eastern part of the West Plains (GSI Water Solutions et al., 2015). Groundwater levels are influenced by modern streams and creek valleys with groundwater flow shown deflecting toward canyons and interrupting lateral flow (SCWR, 2013). The Latah I interbed generally consists of clay with variable sand and gravel and is up to 120 feet thick in the West Plains, functioning primarily as a confining unit separating the upper Wanapum Basalt aquifer zones from the Grande Ronde aquifer zones in some locations (TetraTech, 2007).

3.5.1.2 Grande Ronde Basalt Aquifers

Two aquifer zones are hosted in the Grande Ronde Basalt in the West Plains, one in the Sentinel Bluffs Member and underlying interbed (Latah II) and another below the Wapshilla Ridge Member (GSI Water Solutions et al., 2015). The upper surface of the Wapshilla Ridge Member is densely fractured and eroded, with deposits of the Latah II formation discontinuously overlying the upper surface. The lowermost aquifer zone is largely confined due to the relatively massive and impermeable flow interiors of the Wapshilla Ridge Member flows, as well as silt and clay deposits of the Latah III interbed.

Based on wells screened in the Grande Ronde Basalt, potentiometric elevations in the West Plains have a greater range; upgradient elevations range between 2,200 and 2,300 feet amsl, while downgradient elevations generally are less than 1,800 feet amsl (GSI Water Solutions et al., 2015). Groundwater flow follows the general dip of the upper Grande Ronde surface toward the east-northeast with little to no influence from stream canyons, except at the furthest east zone near the Spokane River (GSI Water Solutions et al., 2015).

3.5.2 Overburden Aquifer System

The overburden aquifer system in the West Plains consists of unconfined groundwater within glacialoutburst flood and alluvial sediments overlying basalt and/or basement rocks, with the thickest deposits found in both present day canyons and ancient paleochannels (TetraTech, 2007; GSI Water Solutions et

al., 2015; Osborn, 2021). Elsewhere, alluvial aquifers are thin (less than 10 feet thick) and typically occupy shallow depressions in the surface of the Wanapum Basalt. The distribution of saturated alluvial sediments is discontinuous, with little to no lateral continuity between separate areas (GSI Water Solutions et al., 2015). The irregular elevation of the upper contact of the Wanapum Basalt creates high hydraulic gradients where high-conductivity gravel and sand deposits are juxtaposed with relatively low-permeable basalt.

Hydraulic conductivity of the alluvial sediments is controlled by the variation of coarse-grained (sand and gravel) and fine-grained (silt and clay) sediments. Where present, coarse-grained deposits generally will have higher hydraulic conductivity and transmissivity than fine-grained sediments. Hydraulic conductivity in coarse outburst-flood deposits ranges from hundreds to thousands of feet per day (0.03 to greater than 0.35 centimeters per second [cm/s]), with transmissivity of 10,000 to more than 100,000 square feet per day (900 to more than 9000 square meters per day) (GSI Water Solutions et al., 2015). Values for fine- grained sediments can be three to five orders of magnitude lower than the coarse-grained sediments (GSI Water Solutions et al., 2015).

3.5.3 Paleochannels

As discussed in Section 3.4.3, five northeast- to southwest-trending, sediment-filled paleochannels are present in the West Plains (see Figure 1) and are a significant part of the overburden aquifer system. Depth to water and aquifer thickness varies based on the elevation of the top of the basalt but likely is several tens of feet or more (GSI Water Solutions et al., 2015). In the development of the West Plains Stormwater Action Plan, Osborn et al. (2021) summarized and built upon work by others to assess the physical and hydrogeologic characteristics of two of the paleochannels closest to the project site (Airway Heights and Northeast Paleochannels). Paleochannel boundaries shown on Figure 1 are based on Osborn, et al. (2021), and are subject to revision based on forthcoming investigations.

The hydraulic conductivity property of the sediments within the paleochannels generally are higher than in the surrounding basalt bedrock (GeoEngineers, 2021; NLW, 2012; Osborn et al., 2021). Based on the references reviewed for this report, the interaction between aquifers hosted in paleochannel deposits and CRBG-hosted aguifer is poorly constrained in the West Plains and likely is dependent upon highly variable, location-specific conditions, such as (but not limited to): depth to basalt, groundwater elevation, aquifer characteristics, and lithologic composition of geologic units. Regional studies estimated hydraulic conductivities range between approximately 100 and 6,000 feet per day for glaciofluvial deposits in Spokane County (Bolke and Vaccaro, 1981; CH2M Hill, 1998). The high hydraulic conductivity paleochannels are a potential preferential flow path for both the overburden aquifer systems and CRBG-hosted aquifer zones. Osborn, et al., (2021) and GeoEngineers (2021) interpret the unconfined aquifers within these paleochannels generally act "as a drain resulting in subsurface discharge from the Wanapum Unit into the paleochannel" due to the aquifers' relatively high permeability and low hydraulic head. Geochemical and groundwater elevation data presented in NLW 2012 and NLW 2014 led the authors to infer that preferential flow from paleochannels allow "younger water to be introduced into the deeper groundwater within the Grande Ronde" (see Section 4.4 for discussion of geochemical data). However, GSI Water Solutions et al. (2015) interpreted hydrographs of water wells as showing limited to "no significant influence on the basalt groundwater system beneath the incision depths of the paleochannels". Based on review of available references, it is our understanding that the hydrogeologic variability indicates preferential flow paths might exist between the paleochannel aquifers and the CRBG-hosted aquifers at select locations, elevations, and/or basalt flow structure (i.e., flow tops, bottoms).

3.5.3.1 Airway Heights Paleochannel

The Airway Heights paleochannel is the longest paleochannel within the West Plains based on historical information. The eastern edge of the paleochannel is located approximately 1.5 miles west of the Site and the western edge of the paleochannel is adjacent to Fairchild Air Force Base (FAFB). The paleochannel generally trends north-northeast starting near I-90 and extends toward the Spokane River valley, a potential discharge area according to GeoEngineers (2021) and Osborn et al. (2021). The maximum sediment thickness in the Airway Heights paleochannel averages between 100 and 300 feet across its length, increasing from about 50 feet to greater than 300 feet from south to north (Osborn et al., 2021). Based on cross-sections presented in Pritchard (2013), the Airway Heights Paleochannel locally incises through the Wanapum Basalt and into the uppermost Grande Ronde Basalt.

Groundwater flow is thought to flow downgradient toward the north-northwest within the paleochannel (GeoEngineers, 2021; Osborn, et al., 2021). Minimum unconfined aquifer thickness was measured between 89 and 125 feet in water supply wells for the City of Airway Heights (GeoEngineers, 2021) and generally is estimated to be about 100 feet thick south of the City of Airway Heights (Osborn et al., 2021). Hydraulic conductivities from pump tests conducted within the Airway Heights paleochannel water-bearing zone were estimated to range between 490 and 770 feet per day (GeoEngineers, 2021).

3.5.3.2 Northeast Paleochannel

The southern extent of the Northeast Paleochannel potentially is located within the northeastern boundary of the Site (Budinger and Associates, 2001; Derkey et al, 2004; Osborn et al., 2021) and generally extends to the north-northeast, terminating approximately 4 to 5 miles northeast of the Site at a suspected discharge area to the Spokane River Valley (Osborn et al., 2021). This paleochannel is the deepest of the five paleochannels identified in the West Plains: Ecology well logs indicate glaciofluvial deposits are up to 429 feet deep within the paleochannel boundary (Osborn et al., 2021). Based on cross-sections presented in Pritchard (2013), the northeast paleochannel appears to incise through the Wanapum Basalt and into the uppermost Grande Ronde Basalt along most of its length. Unconfined aquifer thicknesses have been locally reported to range between 63 and greater than 98 feet (Osborn et al., 2021), but hydrogeologic parameters generally have not been established for the Northeast Paleochannel.

4. SIA Hydrogeologic Framework

Additional Site-specific data should be collected to better understand the geologic and hydrogeologic framework at the Site. Additional data collection will help provide a better understanding of the geologic contacts, depths, and lithology, the hydrogeologic characteristics (i.e., groundwater flow direction, hydraulic gradient, etc.), and potential pathways that likely attribute fate and transport of potential contaminants of concern. However, to prepare for a future Site-specific geologic and hydrogeologic assessment, Haley & Aldrich reviewed publicly available geologic data from adjacent properties and Site-specific data provided by the Airport Board, including: 23 boring logs, drilling logs, and/or well installation logs from the Site.

Because monitoring well names are similar, appear repetitive, and can be difficult to distinguish, Haley & Aldrich divided Site boring log data into six areas within the Site boundaries. The six areas, area abbreviations (in parentheses below), and area descriptions are summarized below and shown on Figure 2.

- The Land Treatment Area (LA), located near the northwest boundary;
- The West Peripheral Area (W), located near the west-southwest-central boundary;
- Joint Fire Training (EA), located near the southern boundary;
- The Stormwater Recovery Area (SWN), located near the northeastern boundary;
- The Park Drive Waste Disposal Area (PD), located near the east-central boundary; and
- The Southeast Area of Business Park (FGF), located near the east-central boundary.

The Electric Avenue area is a location where firefighting training was conducted jointly between SIA, Air National Guard, and Army National Guard (Joint Training Area) prior to 1999 and the current location of the Air National Guard. Area abbreviations have also been added to monitoring well names to distinguish between redundant well names.

4.1 SITE GEOLOGY AND HYDROGEOLOGY

Based on our review of the available boring logs and geologic maps, the geology at the Site generally consists of sedimentary overburden deposits (mostly sand to silty sand with gravels and a silt zone toward the northwest boundary of the Site) from the ground surface that are underlain by the CRBG at variable depths across the Site. The geologic map used in our review is provided in Appendix A. The southeastern boundary of the Airway Heights paleochannel parallels the western portion of the Site and is located approximately 1.5 miles west of SIA. The extent of the southern point of the Northeast Paleochannel is unknown but generally exists within the north side of SIA (according to Osborne et al., 2021) and the Marshall paleochannel is located approximately 5 miles south of the Site.

Boring logs for the Land Application area suggest that the overburden consists of an approximate 10-foot-thick silt zone starting at or near the ground surface that is underlain by sand/gravel to silty sandy gravel, with some clay zones approximately 5 feet thick (MW-8 [LA-MW-8] in Appendix B). The overburden within this area ranges from 12 feet to 20 feet thick and is underlain by weathered to competent basalt. Seasonally high groundwater was reported to be less than 10 feet bgs by Cascade

Earth Sciences (CES), 2018. CES concluded that groundwater flow direction in the Land Application area was to the northwest.

Overburden within the Western Peripheral area consists of silty sand to sand/gravel and is approximately 8.5 to at least 25 feet thick toward the south of the area (note: monitoring well MW-17 [W-MW-17] is the deepest boring within this area and bedrock was not encountered during drilling). Consequently, and when compared to the boring logs located near the Electric Avenue area at the Joint Training Area, it appears that the overburden/ basalt contact increases with depth toward the southwest of the Primary Airport Area.

The boring logs from the Joint Fire Training Area indicate that the overburden consists of silty sand and gravel with potential fill material to approximately 16 to 25 feet bgs² and is underlain by basalt. ERM, Inc., 1996, reported the Electric Avenue area previously was used as a landfill and that overburden and fill is reported in boring logs to a depth of 24 feet bgs. Depth to water has been observed in this area at between 14 and 20 feet bgs in wells screened in overburden and 19 to 26 feet bgs in wells screened in basalt (ERM, Inc., 1996).

In the Stormwater North area and the Park Drive area, the overburden consists of silty sand to sand/gravel, is approximately 4 to 18.5 feet thick and is underlain by basalt.

The Former Geiger Field area contains one boring, MW-18 [FGF-MW-18], that currently is assumed to be within the investigation boundary of the Site. At MW-18 [FGF-MW-18], the overburden is approximately 11 feet thick, consists of silty gravel and sand, and is underlain by weathered basalt. Northeast of MW-18 [FGF-MW-18] and within the Former Geiger Field area is the Geiger Corrections Facility cleanup site (Facility/ Site No. 663, VCP No. EA0263). Shallow aquifer wells are reported to have a depth to water of 2.15 to 12.57 feet bgs with a flow direction to the northeast; deeper aquifer wells are reported to have a depth to have a depth to water of 10.30 to 38.50 feet bgs with a flow direction of east to northwest (GHD, 2023).

In summary, the overburden thickness can range between 4 feet and 32 feet across the Site and primarily consists of silt, silty sand to sand, and gravels (excluding the potential fill material identified at MW-13A [EA-MW-13A]). The depth to basalt under the overburden generally is deeper in the southwest of the Site and shallower in the Stormwater North area to the northeast.

4.2 WRIA 54 GEOLOGIC CROSS-SECTIONS

Haley & Aldrich reviewed the West Plains Hydrogeologic Data Base report cross-sections (specifically Cross Sections R-R' through V-V' near the Site's footprint) prepared for the WRIA 54 Phase IV Implementation Project (WRIA Project) to assess the general depths of Site geologic units and compare them to Site boring logs. The cross-sections used in our review are provided in Appendix C).

Based on our review, the overburden thicknesses from the WRIA Project generally are in agreement with Site boring logs. The WRIA cross-sections indicate that overburden is less than 40 feet thick and overlies the Wanapum Basalt formation of the CRBG, indicating that the basalt encountered during drilling at the Site likely is the Wanapum Basalt formation. Furthermore, the "Latah I" formation likely is

² One exception is at monitoring well MW-13A [EA-MW-13A] where fill may extend to 32 feet bgs. MW-13A [EA-MW-13A] boring log indicates "trace charcoal and leaves" between 17.5 feet and 32 feet bgs, indicating that fill likely is present).

between 100 feet and 200 feet bgs overlaying the Grand Ronde basalt formation. Based on the WRIA Project, the top of the Grand Ronde basalt likely is greater than 200 feet bgs at the Site and the thicknesses is approximately 200 feet (based on Cross- Sections R-R', S-S', and T-T'). According to the WRIA Project, the "Latah II" formation underlies the Grand Ronde basalt unit below the Site footprint and is approximately 50 feet thick overlaying the Basement Rock.

4.3 STORMWATER RUNOFF AND PREFERENTIAL FLOW

Haley & Aldrich reviewed the West Plains Stormwater Action Plan (stormwater plan) (Osborn et al., 2021) to assess potential transport mechanisms, and potential recharge/discharge areas of the West Plains. The surface flow paths in the West Plains are influenced by the relatively flat topography, with a slight slope from the southwest toward the northeast, and varies locally based on locations of basement ridges and the CRBG surface/near-surface topography.

According to the stormwater plan, precipitation in the West Plains ranges from less than 10 inches per year to more than 22 inches per year and much of the precipitation occurs as snow. The wet season is defined as November through March (Osborn et al., 2021) and the majority of precipitation falls on frozen ground or as snow resulting in rapid runoff and minimal infiltration to groundwater.

Approximately 85 percent of West Plains precipitation is lost to evaporation, evapotranspiration, and runoff (Osborn et al., 2021). Groundwater around the Site generally is recharged by precipitation or stormwater runoff and groundwater flow typically occurs within glaciofluvial deposits (i.e., paleochannels or overburden overlying basalt), individual basalt flows (transmitted through fractured and vesicular interflow zones near the top of each flow), and/or within the basement rock (within fractured and/or weathered zones) (Osborn et al., 2021).

Site-specific stormwater flow pathways and recharge/discharge areas were interpreted from SIA's Stormwater Pollution Prevention Plan (SWPPP; Valley Science and Engineering, 2022). Based on the SWPPP, stormwater at the Site is collected in two primary collection areas: the Alpha Collection Area and the 3-21 Collection Area. A third minor collection area, referred to as Perimeter Drainage area, also drains to the northeast. All three of these collection areas discharge to the northeast of the airport property into a stormwater recovery area (for infiltration and/or evaporation). Additional data collection will result in a better understanding of stormwater discharge as a potential contributor to potential contaminant fate and transport at the Site.

Stormwater runoff near the northeastern corner of the Site generally flows and discharges into drainage ditches and nearby shallow ponds and depressional wetlands ponds without continuous drainage systems (Osborn et al., 2021). Surface water discharged into this area likely evaporates or infiltrates through preferential pathways within the overburden and/or basalt.

4.4 GEOCHEMICAL DATING AND LOCALIZED GROUNDWATER LEVELS

Between 2010 and 2014, NLW installed and collected groundwater samples from wells in the West Plains for the Spokane County Conservation District (NLW, 2012; NLW, 2014). The intent of this work was to develop a groundwater flow model of the hydrogeologic system in the West Plains and lower Hangman Creek watersheds and evaluate potential limitations on long-term water supply. Using stable and radioactive isotope data from analyzed groundwater samples, the source and age of groundwater recharge, as well as the degree of mixing between aquifers, can be inferred. At a high-level, 'old' water

indicates a longer residence time and potential limitations on groundwater recharge under pumping conditions. 'Young' water indicates a shorter residence time and may be a less limited resource. Additionally, the presence of hydrogen isotope and tritium indicates the presence of groundwater that likely recharged within the last 70 years. GSI Water Solutions et al. (2015) reviewed and summarized this age-dating analysis by area and the two closest study areas to the Site (Marshall Creek Area [located to the southeast of the Site] and the Central West Plains Area [between FAFB and SIA]) are summarized below.

4.4.1 Marshall Creek Area

According to GSI Water Solutions et al. (2015), the Marshall Creek Area comprises the southeastern portion of the West Plains, encompassing Marshall Creek Canyon and adjacent areas. The basement highs associated with Needman Hill (Needman Hill Ridge area; Figure 8) bound much of the western side of the Marshall Creek area. The eastern boundary follows Latah Creek valley at the eastern boundary of the West Plains.

Five Marshall Creek area wells were evaluated, including two wells installed within alluvial overburden, with open-well intervals approximately 60 to 78 feet and 230 to 240 feet bgs, respectively. The other three wells were installed within the CRBG units, Wanapum, and/or Grande Ronde, with open-well intervals ranging between 100 and 440 feet bgs. The bottom of the wells installed within the CRBG units ranged between 137 feet and 440 feet bgs. Out of these five wells, two water samples were collected and analyzed for age-dating using Carbon-14 and/or tritium analyses: one from the overburden aquifer and one from groundwater hosted in the Grand Ronde Formation. Analytical results indicate that the overburden groundwater estimated age was approximately 3,470 years and the Grand Ronde groundwater estimated age was approximately 10,670 years (GSI Water Solutions et al., 2015; NLW, 2014). The presence of tritium in groundwater samples from the basalt-hosted aquifer zones indicates that the physical age of the 'old' water likely is significantly greater than the apparent age of the sample and that the aquifer experiences some mixing of 'younger' water (NLW, 2012; NLW, 2014).

4.4.2 Central West Plains Area

The Central West Plains area comprises the geographic area generally bounded to the west by FAFB, to the south-southwest by basement highlands around Medical Lake and Four Lakes (Figure 1 and Figure 8), to the southeast and east by the basement rock associated with Needham Hill, to the west by the SIA, and to the north by US-2 (GSI Water Solutions et al., 2015). According to GSI Water Solutions et al., this area hosts (or has hosted) production wells for three primary municipalities and consists of several monitoring wells that monitor shallow and deep basalt zones.

During this study, 21 Central West Plains Area wells with long-term water level records were evaluated within this area (with approximately 11 of the monitoring wells located at Craig Road Landfill west of the Site). This area includes one well installed within the overburden aquifer, 20 wells installed within Wanapum and/or Grand Ronde aquifer zones, and one well installed within the Basement aquifer unit (Four Lakes School). The bottom of the well installed within CRBG aquifer zones were installed between 82 feet bgs and 1,404 feet bgs. The bottom of the well installed within the Basement aquifer unit was installed at approximately 200 feet bgs. Based on our review, samples from three wells were collected and analyzed for age-dating; two from the Wanapum/Grand Ronde and one with a well depth and unknown open-well interval. Analytical results indicate that the water within CRBG aquifer zones ranged

between 1,490 and 10,670 years. The wide variability in estimated groundwater age may be due to the mixing of younger water via preferential flow paths and/or multi-aquifer wells into the CRBG aquifer zone (NLW, 2012; NLW, 2014).

In summary, groundwater age dating in the West Plains suggests that the rate of recharge to the CRBG aquifer system is relatively slow, and groundwater present more than several hundred feet deep displays geochemical characteristics indicative of residence time in the subsurface of hundreds to thousands of years (Osborn et al., 2021). The time required to recharge CRBG aquifer system likely is dependent on preferential flow paths (i.e., fractures, vesicles) and is greater than the time required to recharge the surficial overburden aquifer system. The presence of tritium in 'old' groundwater samples from wells in both the Marshall Creek Area and the Central West Plaines Area indicates that even the deep aquifers experience some influence from 'younger' water sources (NLW, 2012).

5. Summary

The Site is located along the eastern boundary of Washington State within the southeastern boundary of the West Plains, west of the City of Spokane, Washington (Figure 1). The topography of the West Plains is a relatively flat plateau with deep surface water canyons and rolling hills. The geologic framework of the West Plains includes a Precambrian crystalline igneous and metamorphic basement rock, overlain by members of the CRBG (specifically the Wanapum and Grande Ronde basalt) with associated interbeds (including sedimentary interbed deposits), overlain by Pleistocene alluvial and Missoula flood deposits and eolian deposits. The West Plains top of bedrock elevation varies across the area and forms buried ridges in the subsurface that influence groundwater flow and create aquifer compartmentalization (Figure 8).

The landscape within the West Plains generally consists of mixed semi-arid, agricultural, and urban/semi-urban landscapes, and the landscape at the Site includes stormwater infrastructure, impermeable surfaces caused by shallow to surficial bedrock, and coarse-grained alluvial deposits that infilled paleochannels.

The hydrogeology of the West Plains is uniquely disconnected from the Palouse Slope due to the presence of basement rock boundaries (Figure 8). The groundwater within the West Plains generally is found within the Wanapum and Grand Ronde basalt units, and within a much smaller extent, the Pleistocene alluvial sediments (overburden), with the underlying Precambrian basement acting as an aquitard of the West Plains aquifer system. The aquifers within the overburden are unconfined aquifers overlying the basalt, and the bedrock aquifers generally are confined with water-bearing intervals within interflow zones and interbedded Latah Formation sediments (GSI Water Solutions et al., 2015).

Depth to groundwater in the West Plains varies from several feet to several hundred feet (GSI Water Solutions et al., 2015) depending on the well location and water-bearing zone screened. GSI Water Solutions et al. (2015) identified four aquifers within the West Plains, an upper alluvial aquifer and three aquifers within the CRBG basalt units (the Wanapum Basalt, upper Grande Ronde Basalt, and lower Grande Ronde Basalt). Five northeast- to southwest-trending, sediment-filled paleochannels are found in the West Plains and are a significant part of the overburden aquifer system. The hydraulic conductivity and connectivity of paleochannel alluvial aquifers to CRBG-hosted aquifers has a high degree of variability based on elevation, location, and underlying basalt flow structure.

Additional data is needed to provide an accurate Site-specific geologic and hydrogeologic framework to better assess transport mechanisms at the Site. Based on Haley & Aldrich's review of available information, the overburden thickness can range between 4 feet and 32 feet across the Site and mostly consists of silt, silty sand to sand, and gravels (excluding the potential fill material at MW-13A). The depth to basalt under the overburden generally is deeper within the southwestern boundary of the Site and shallower in areas around the Stormwater North area to the northeast. Due to the incomplete survey data for the Site monitoring wells the following hydrogeologic data gaps exist at this time:

- Site-specific groundwater elevations,
- Site-specific groundwater flow direction(s), and
- Site-specific hydraulic gradient(s).

Surface water discharged into the Stormwater Recovery Area likely evaporates or infiltrates through preferential pathways within the overburden and/or basalt. The SIA SWPPP indicates that stormwater from the airport is diverted into three basins, all of which are routed for discharge at the northeast side of the Site. Based on the age of the groundwater within the aquifers (NLW, 2014), the rate of recharge to the West Plains CRBG aquifer system is relatively slow and groundwater more than a few hundred feet deep displays geochemical characteristics indicative of hundreds to thousands of years residence time in the subsurface (Osborn et al., 2021). The time required to recharge CRBG aquifer system likely is dependent on preferential flow paths (i.e., fractures, vesicles, etc.) and is greater than the time required to recharge the surficial overburden aquifer system.

References

- 1. AECOM, 2017. Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals, Spokane International Airport, Spokane, Washington.
- 2. Baker, V.R., 2009. The Channeled Scabland: a retrospective. Ann Rev Earth Planet Sci 37:393-411.
- 3. Bolke, E.L., Vaccaro, J.J., 1981. Digital-model simulation of the hydrologic flow system, with emphasis on ground water, in the Spokane Valley, Washington and Idaho. United States Geological Survey Report 80-1300.
- 4. Budinger and Associates Inc., 2001. Paleo-channel investigation, Airway Heights, WA: Results of seismic refraction survey. URS and Spokane County, Spokane Valley, WA.
- Burns, Erick R., David S. Morgan, Rachael S. Peavler, and Sue C. Kahle, 2011. "Three-Dimensional Model of the Geologic Framework for the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington Scientific." Scientific Investigations Report 2010–5246. U.S. Geological Survey.
- Burns, Erick R., Colin F. Williams, Terry L. Tolan, and J. Ole Kaven, 2016. "Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a Viable Geothermal Target? A Preliminary Analysis." In PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering, 1–11. 41. Stanford University.
- 7. Camp, V.E., 1981. Geologic studies of the Columbia Plateau: Par II. Upper Miocene basalt distribution, reflecting source locations, tectonism, and drainage history in the Clearwater embayment, Idaho. GSA Bulletin 92: (9) 669-678.
- 8. Camp et al., 2017. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington. United States Geological Survey. 22 June.
- 9. Cascade Earth Sciences (CES), 2018. Spokane International Airport Project #18-43-9999-012: September 2018 Land Application Site Activity Report.
- 10. CH2M HILL, 1998. City of Spokane wellhead protection program phase I-Technical assessment. CH2M HILL for the City of Spokane Wellhead Protection Program.
- 11. Deobald, William, and John P. Buchanan, 1995. "Hydrogeology of the West Plains Area of Spokane County, Washington." Spokane County Water Quality Management Program.
- 12. Derkey, Robert, Michael M. Hamilton, and Dale Stradling, 2004. "Geologic Map of the Airway Heights 7.5-Minute Quadrangle, Spokane County, Washington." Washington Department of Natural Resources.

- 13. Drost, B.W., K.J. Whiteman, and J.B. Gonthier, 1990. Geologic Framework of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho. US Geological Survey Water-Resources Investigations Report 87-4238.
- 14. Gaylord, David R., John H. Lundquist, and G. D. Webster, 1989. "Stratigraphy and Sedimentology of the Sweetwater Creek Interbed, Lewiston Basin, Idaho and Washington." In Volcanism and Tectonism in the Columbia River Flood-Basalt Province. The Geological Society of America Special Paper 239. The Geological Society of America.
- 15. ERM-West, Inc., 1996. Installation Restoration Program (IRP) Final Remedial Investigation / Feasibility study Work Plan, 242nd Combat Communications Squadron, Spokane Air National Guard Station, Washington Air National Guard, Spokane, Washington.
- 16. GeoEngineers Inc., 2007. Hydrogeologic Evaluation, Proposed Water Reclamation Plant, City of Airway Heights, Report for City of Airway Heights, WA.
- 17. GeoEngineers, Inc., 2021. Alternative Groundwater Supply Assessment, City of Airway Heights Water System, Airway Heights, Washington. GeoEngineers, Inc. for Century West Engineering Company.
- 18. GHD, 2023. Site Environmental Investigation Report, Phillip 66 Facility No. 6880, Geiger Corrections Facility, Spokane, Washington.
- 19. Goff, Fraser, 1996. "Vesicle Cylinders in Vapor-Differentiated Basalt Flows." Journal of Volcanology and Geothermal Research 71:167–85.
- 20. GWMA, 2009. "Subsurface Mapping and Aquifer Assessment Project Final Project Performance Report." G0800145. Groundwater Management Area (GWMA). Washington State Department of Ecology. https://apps.ecology.wa.gov/publications/SummaryPages/1203262.html.
- 21. GSI Water Solutions Inc., INTERA Inc., GeoEngineers Inc., and Carlstad Consulting, 2015. Hydrogeologic Framework and Conceptual Groundwater Flow Model, Review of Groundwater Conditions in the West Plains Area, Spokane County.
- Hamilton, M.H, Derkey, R.R., and Stradling, D.F., 2004. "Geologic Map of the Four Lakes 7.5-Minute Quadrangle, Spokane County, Washington." Washington Department of Natural Resources.
- 23. Kahle, S.C., T.D. Olsen, and D.S. Morgan, 2009. Geologic setting and hydrogeologic units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho: U.S. Geological Survey Scientific Investigations Map 3088.
- Kahle, Sue C., David S. Morgan, W. B. Welch, D. M. Ely, S. R. Hinkle, J. J. Vaccaro, and L. L. Orzol, 2011. "Hydrogeologic Framework and Hydrologic Budget Components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho." Scientific Investigations Report 2011–5124. U.S. Geological Survey. https://pubs.usgs.gov/sir/2011/5124/pdf/sir20115124.pdf.
- 25. Kasbohm, Jennifer, Blair Schoene, Darren F. Mark, Joshua Murray, Stephen Reidel, Dawid Szymanowski, Dan Barfod, and Tiffany Barry, 2023. "Eruption History of the Columbia River

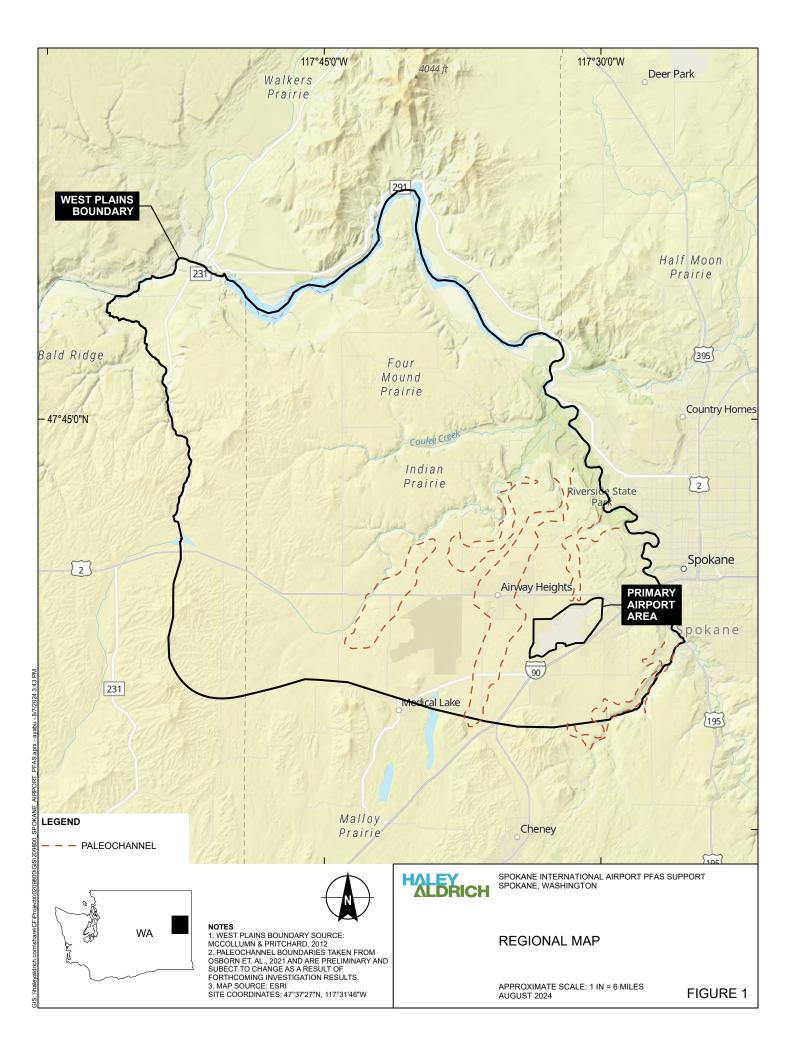
Basalt Group Constrained by High-Precision U-Pb and 40Ar/39Ar Geochronology." Earth and Planetary Science Letters 617 (September):118269. https://doi.org/10.1016/j.epsl.2023.118269.

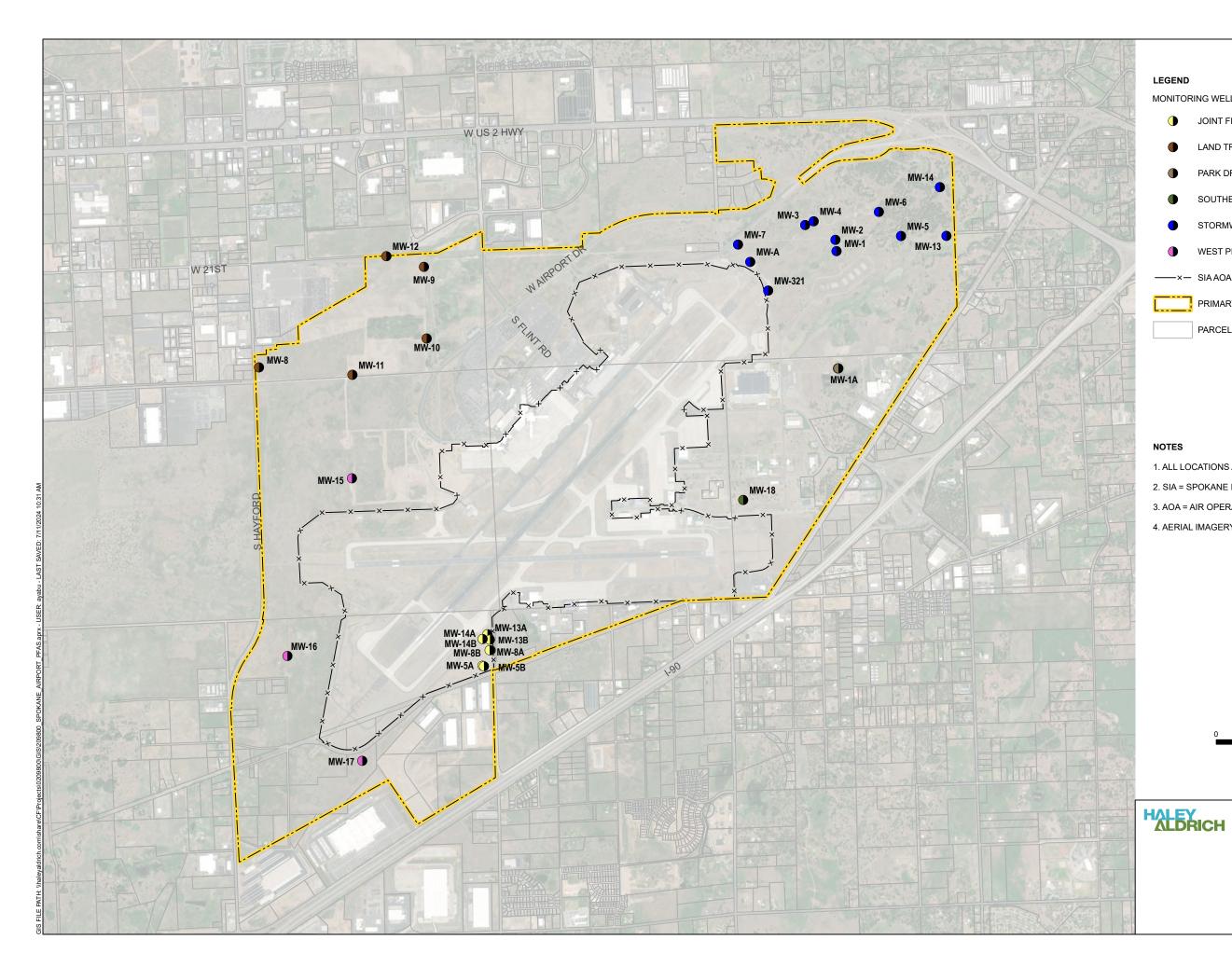
- Kiver, Eugene P., Richard L. Orndorff, Michael B. McCollum, and Dale Stradling, 2006.
 Interactions between Missoula Floods, the Cheney-Palouse Scabland, Steptoe Ridges, and the Columbia River Ice Lobe. Ice Age Flood Institute.
- 27. Lallemont, H.G.L., 1995. Pre-Cretaceous Tectonic Evolution of the Blue Mountains Province, Northeastern Oregon. Geology of the Blue Mountains Region of Oregon, Idaho, and Washington. Petrology and Tectonic Evolution of Pre-Tertiary Rocks of the Blue Mountain Region. U.S. Geological Survey Professional Paper 1438.
- 28. Lindholm G.F., Vaccaro J.J., 1988. Region 2, Columbia lava plateau. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology, The Geology of North America. Geol Soc Am 37-50.
- 29. Lite, Kenneth E., 2013. "The Influence of Depositional Environment and Landscape Evolution on Groundwater Flow in Columbia River Basalt - Examples from Mosier, Oregon." In The Columbia River Flood Basalt Province, 429–40. The 497. The Geological Society of America.
- 30. McCollum, M.B. and M.M. Hamilton, 2012. West Plains Delineation of Aquifer Zones Within Basalt Formations Project, WRIA 54 – Lower Spokane, Technical Memorandum to Accompany the Appendix A: Fence Diagrams and Appendix B: Lithostratigraphic Columns.
- 31. McCollum, Linda B., and Michael M. Hamilton, 2012. "TECHNICAL MEMORANDUM TO ACCOMPANY APPENDIX A: FENCE DIAGRAMS AND APPENDIX B: LITHOSTRATIGRAPHIC COLUMNS." Eastern Washington University: Geology Department.
- 32. McCollum, M.B. and C.J. Pritchard, 2012. WRIA 54 Delimiting Geologic Structures Affecting Water Movement and Flow Directions of the CRBG West Plains Aquifer, Technical Memorandum to Accompany the Structural Geology Map of the West Plains Region.
- 33. McCollum, Michael B., and Chad J. Pritchard, 2012. "TECHNICAL MEMORANDUM TO ACCOMPANY THE STRUCTURAL GEOLOGY MAP OF THE WEST PLAINS REGION." Eastern Washington University: Geology Dept.
- 34. National Wetlands Inventory (NWI), 2024. Wetland Mapper. https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/. Accessed 9 May 2024.
- 35. NewFields Government Services (NGS), LLC, 2021. Hydrogeologic Study Report and Alternate Well Location Evaluation Final, City of Airway Heights, Airway Heights, Washington.
- 36. Northwest Land and Water, Inc. (NLW), 2011. Hangman Creek Watershed (WRIA 56) Hydrogeologic Characterization and Monitoring Well Drilling Final Report.
- 37. Northwest Land & Water, Inc., 2012. "West Plains (WRIA 54) & Lower Hangman Creek
 Watershed (WRIA 56) Hydrogeologic Characterization & Monitoring Well Drilling Final Report."
- 38. Northwest Land and Water, Inc. (NLW), 2012. West Plains (WRIA 54) and Lower Hangman Creek Watershed (WRIA 56) Hydrogeologic Characterization and Monitoring Well Drilling Final Report,

an Addendum to: Hangman Creek Watershed (WRIA 56) Hydrogeologic Characterization and Monitoring Well Drilling Final Report.

- Northwest Land and Water, Inc. (NLW), 2014. Results for West Plains and Lower Hangman Creek sampling and analysis of groundwater samples to supplement the previous WRIA 54/56 Hydrogeologic. Investigation.
- 40. Osborn Consulting et al., 2021. West Plains Stormwater Action Plan, September.
- 41. Pritchard, Chad J., 2013. "Summary for Spokane County WRIA 54 2012-2013 Subsurface Projection of the Stratigraphy of the Columbia River Basalt Group and Paleodrainages in the West Plains Area." Eastern Washington University: Geology Dept.
- 42. Reidel, Stephen P., 2005. "A Lava Flow without a Source: The Cohassett Flow and Its Compositional Components, Sentinel Bluffs Member, Columbia River Basalt Group." Journal of Geology 113:1–21.
- 43. Reidel, Stephen P., Peter R. Hooper, M. H. Beeson, K. R. Fecht, Robert D. Bentley, and J. L. Anderson, 1989. "The Grande Ronde Basalt, Columbia River Basalt Group; Stratigraphic Descriptions and Correlations in Washington, Oregon, and Idaho." In Volcanism and Tectonism in the Columbia River Flood-Basalt Province, 21–53. The Geological Society of America Special Paper 239. The Geological Society of America.
- 44. Reidel, Stephen P., F. A. Spane, and V. G. Johnson, 2003. "The Canoe Ridge Natural Gas Storage Project." PNNL-14298. Pacific Northwest National Laboratory.
- 45. Reidel, Stephen P., and Terry L. Tolan, 2013a. "The Grande Ronde Basalt, Columbia River Basalt Group." In The Columbia River Flood Basalt Province, 117–54. The Geological Society of America Special Paper 497. The Geological Society of America.
- 46. Reidel, S. P., Camp, V. E., Tolan, T. L., & Martin, B. S., 2013a. The Columbia River flood basalt province: Stratigraphy, areal extent, volume, and physical volcanology. In The Columbia River Flood Basalt Province (pp. 1–43). The Geological Society of America.
- 47. Reidel, S. P., Camp, V. E., Tolan, T. L., Kauffman, J. D., & Garwood, D. L., 2013b. Tectonic evolution of the Columbia River flood basalt province. In The Columbia River Flood Basalt Province (pp. 293–324). The Geological Society of America.
- Reidel, Stephen P., and Terry L. Tolan, 2013. "The Late Cenezoic Evolution of the Columbia River System in the Columbia River Flood Basalt Province." In The Columbia River Flood Basalt Province, 201–30. The Geological Society of America Special Paper 497. The Geological Society of America.
- 49. Self, S., Thordarson, T., Keszthelyi, L., Walker, G., Hon, K., & Murphy, M., 1996. A new model for emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophysical Research Letters, 23, 2689–2692.
- 50. Self, S., L. Keszthelyi, and T. Thordarson, 1998. "The Importance of Pahoehoe." Annual Review of Earth and Planetary Sciences 26 (1): 81–110.

- 51. Soderberg, Evan R., Rachelle Hart, Victor E. Camp, John A. Wolff, and Arron Steiner, 2024. "Stratigraphy, Eruption, and Evolution of the Columbia River Basalt Group." In . 69. The Geological Society of America.
- 52. Spane, F. A., 2013. "Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as It Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects." PNNL-22436. Pacific Northwest National Laboratory.
- 53. Swanson, D. A., T. L. Wright, Peter R. Hooper, and Robert D. Bentley, 1979. "Revisions in Stratigraphic Nomenclature of the Columbia River Basalt Group." Geological Survey Bulletin 1457-G.
- 54. Reilly, T.E., Dennehy, K.F., Alley, W.M., and Cunningham, W.L., 2008. Ground-water availability in the United States: U.S. Geological Survey Circular 1323, 70 p. https://pubs.usgs.gov/circ/1323/.
- 55. Spokane County, 2001. West Plains Hydrogeologic Database. Prepared under Ecology Grant G10000326.
- 56. Spokane County Water Resources (SCWR), 2011. West Plains Hydrogeologic Database.
- 57. Spokane County Water Resources, 2013. West Plains Hydrogeology, West Plains Groundwater Elevation and Mapping.
- 58. Spokane Environmental Solutions (SES), 2019. Limited Assessment of Electric Avenue Waste Disposal / Fire Pit Training Area, Spokane International Airport, Spokane, Washington.
- 59. Taylor, Sarah A., and Carey A. Gazis., 2014. "A Geochemical Study of the Impact of Irrigation and Aquifer Lithology on Groundwater in the Upper Yakima River Basin, Washington, USA." Environmental Earth Science 72:1569–87.
- 60. TetraTech, 2007. Water Resource Inventory Area 54 (Lower Spokane) Watershed Plan, Phase 2, Level 1 Data Compilation and Technical Assessment.
- Tolan, Terry L., Stephen P. Reidel, M. H. Beeson, J. L. Anderson, K. R. Fecht, and D. A. Swanson. 1989. "Revisions to the Estimates of the Areal Extent and Volume of the Columbia River Basalt Group." In Volcanism and Tectonism in the Columbia River Flood Basalt Province, 1–20. The Geological Society of America Special Paper 239.
- 62. USGS, 2023. Columbia River Basalt Group Stretches from Oregon to Idaho. Cascade Volcano Observatory article: https://www.usgs.gov/observatories/cvo/science/columbia-river-basaltgroup-stretches-oregon- idaho#overview. Accessed 5 May 2024.
- 63. Valley Science and Engineering, 2022. Stormwater Pollution Prevention Plan, Spokane International Airport, Spokane, Washington, Revised 2023.
- 64. Waitt RB. Periodic JöKulhlaups from Pleistocene Glacial Lake Missoula—New Evidence from Varved Sediment in Northern Idaho and Washington. Quaternary Research. doi:10.1016/0033-5894(84)90005-X.




- 65. Washington State Department of Ecology, 2024. Washington State Well Report Viewer. http://fortress.wa.gov/ecy/wellconstruction/map/WCLSWebMap/default.aspx. Accessed 5 May.
- 66. Webster, G. D., and Luis Nunez, 1982. "Geology of the Steptoes and Palouse Hills of Eastern Washington, a Roadlog of the Area South of Spokane, Washington." In Tobacco Root Geological Society 1980 Field Conference Guidebook, 45–57. Tobacco Root Geological Society.

https://haleyaldrich.sharepoint.com/sites/SpokaneInternationalAirportFeltsFieldAirportBusinessPark/Shared Documents/0209800.SIA PFAS Support/-001 GSI Geiger Field PFAS Support/Deliverables/2024_08 SAR Appendix-Geology and Hydrogeology_FINAL/2024_0813_HAI-GSI_SIA SAR-Geo_Hydrogeo_APP_D F.docx

FIGURES

LEGEND

MONITORING WELL

	JOINT FIRE TRAINING AREA
	LAND TREATMENT AREA
	PARK DRIVE WASTE DISPOSAL AREA
	SOUTHEAST AREA OF BUSINESS PARK
	STORMWATER RECOVERY AREA
	WEST PERIPHERAL AREA
×	SIA AOA FENCELINE
	PRIMARY AIRPORT AREA
	PARCEL BOUNDARY

NOTES

- 1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.
- 2. SIA = SPOKANE INTERNATIONAL AIRPORT
- 3. AOA = AIR OPERATIONS AREA
- 4. AERIAL IMAGERY SOURCE: ESRI

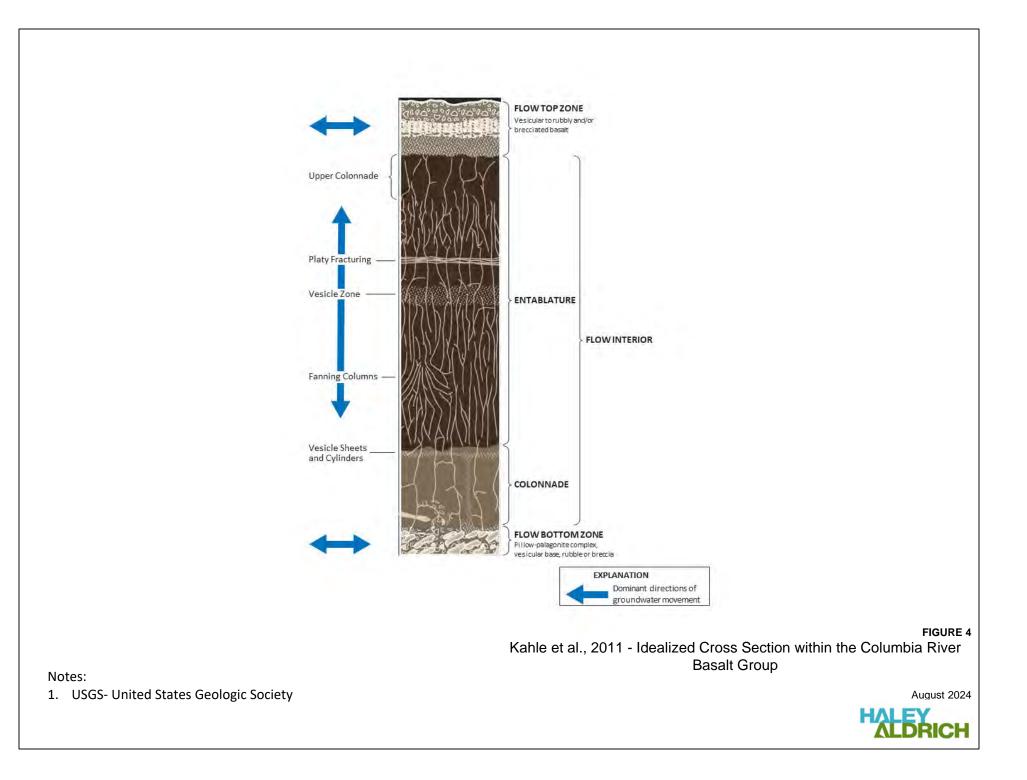
4,000 2,000 SCALE IN FEET

SPOKANE INTERNATIONAL AIRPORT PFAS SUPPORT SPOKANE, WASHINGTON

SITE PLAN

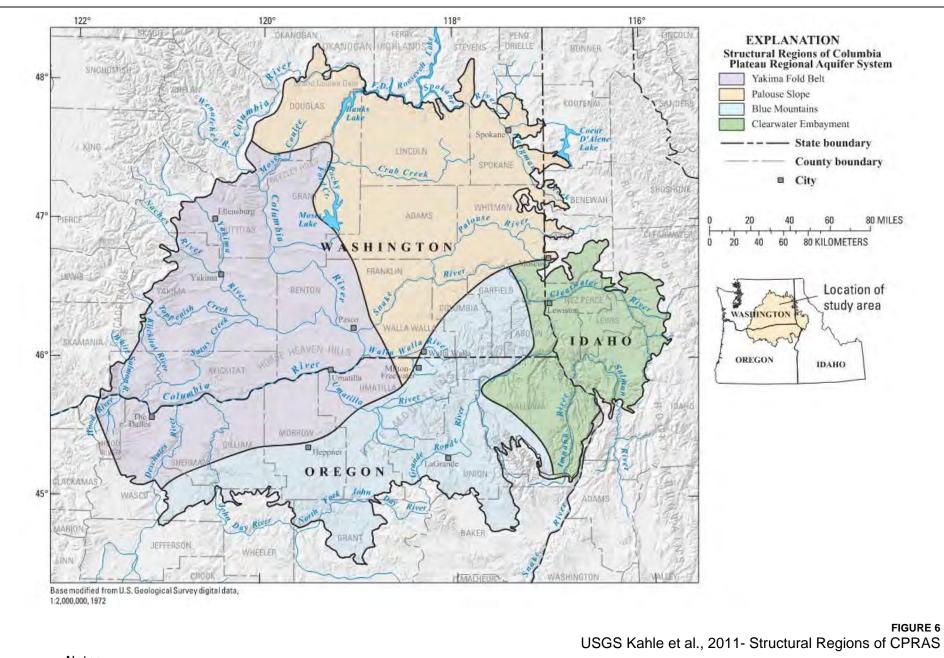
AUGUST 2024

Era	Period	Epoch		Geologic Unit	ts		Geologic Model Units	
1.1.1	Oustamanu	Holocene	011	Quaternary Sedimen	tow links			
	Quaternary	Pleistocene	All	Overburden				
Cenozoic		Pliocene	A	Il Pliocene Sedimenta	ary Units	-		
			Columbia River Flo	Columbia River Flood Basalt Group Sedimentary Interbeds				
Ceno	Tertiary		Member	Unit	Form	ation	Columbia River Basalt Group	
0		Miocene	Wanapum	Priest Rapids	8 L		and	
				Sentinel Bluffs	Priest Rapids		Sedimentary	
			Grande Ronde	Wapshilla Ridge	Elle	Latah	Interbeds	
	Pre-Cenozoic	zoic	Crystalli	ne Igneous and Meta	amorphic Rocl	(S	Basement	


Notes:

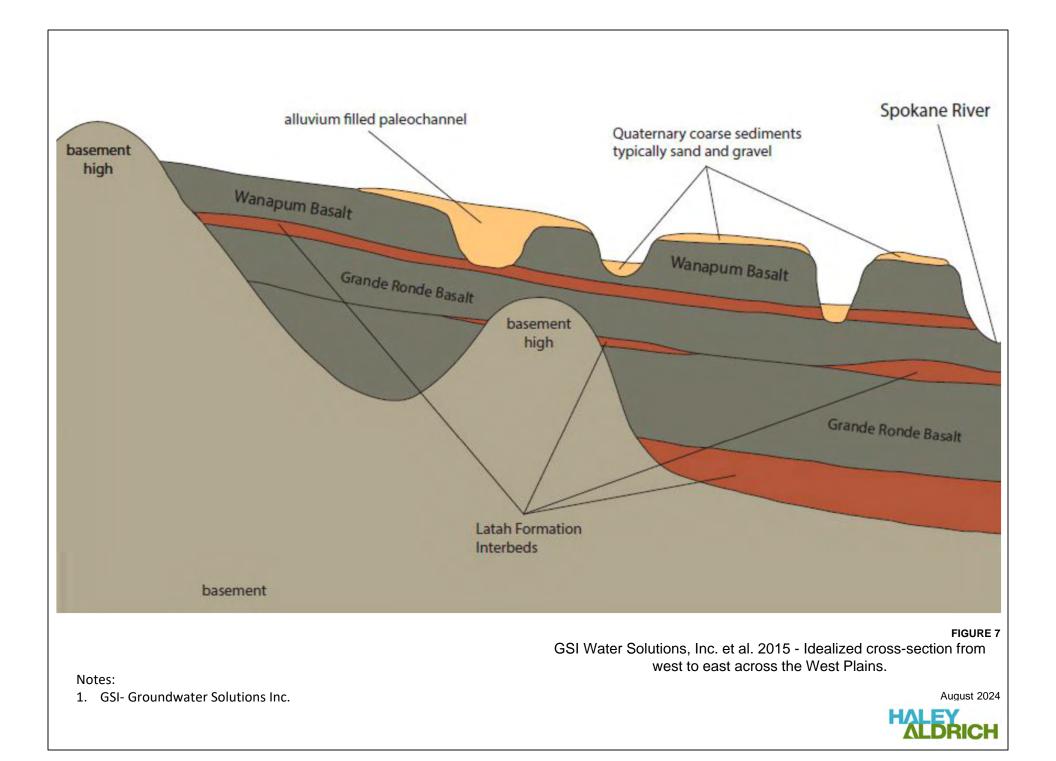
1. Modified from Burns et. Al., 2010 and Reidel and Tolan, 2013b.

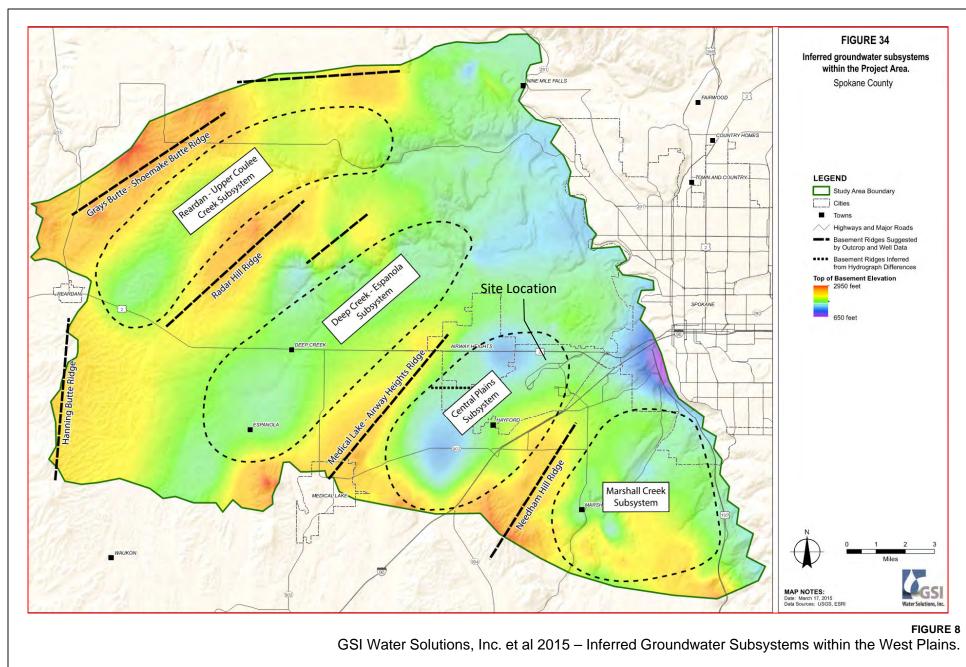
FIGURE 3 Idealized Stratigraphy of the West Plains


August 2024

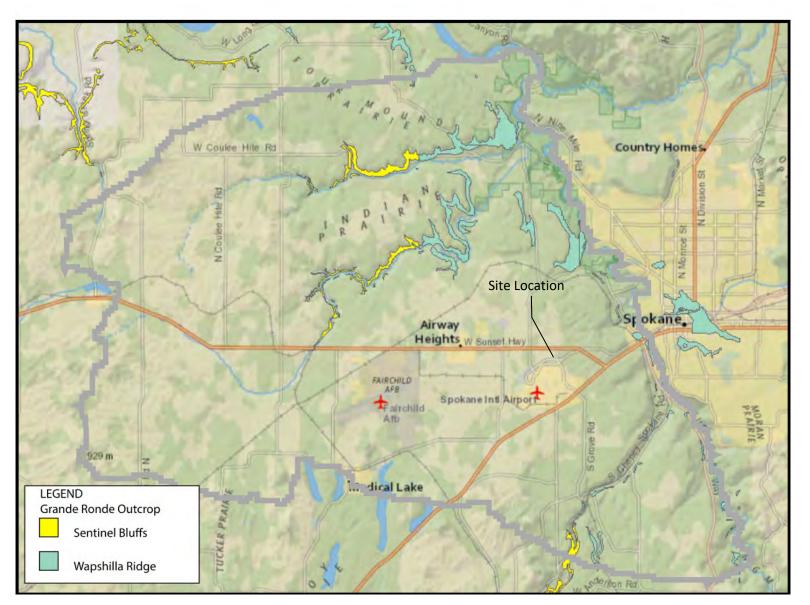
Era	Period	Epoch		Geologic Unit	\$	Geologic Model Units
	Quaternary	Holocene	110		and the last	
	Quaternary	Pleistocene	All U	uaternary Sedimer	ntary Units	Overburden
Cenozoic		Pliocene	All F	Pliocene Sediment		
			1	Saddle Moun flow members	11	Saddle Mountains Basalt
				Mabton	nterbed	Mabton Interbed
				Wanapum Basal	flow members	Wanapum Basalt
			Columbia River Basalt Group	Vantage and La	atah interbeds	Vantäge Interbed
Cenozoic	Tertiary	Miocene		Grande Ronde Basalt flow	Prineville Basalt	
				members and interbeds		Granda Romie
				interocue	Picture Gorge Basalt	Basalt
				Imnäha	Basalt	8
		pre-Miocene	pre-Coli	umbia River Basali	Group rocks	Older Bedrock

FIGURE 5 USGS Burns et al., 2010- CPRAS Geologic Units and Timeline




Notes:

- 1. USGS- United States Geologic Society
- 2. CPRAS- Columbia Plateau Regional Aquifer System


August 2024

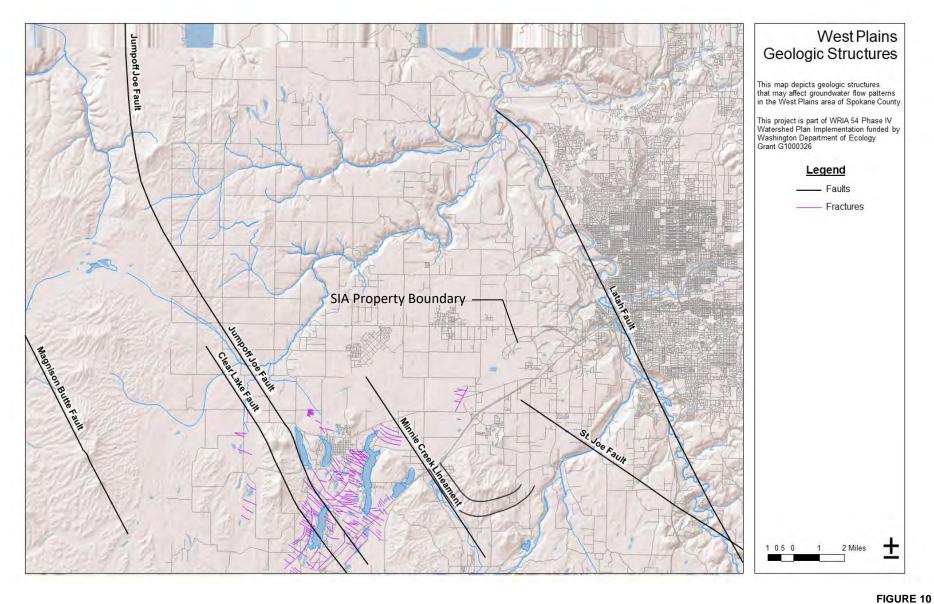
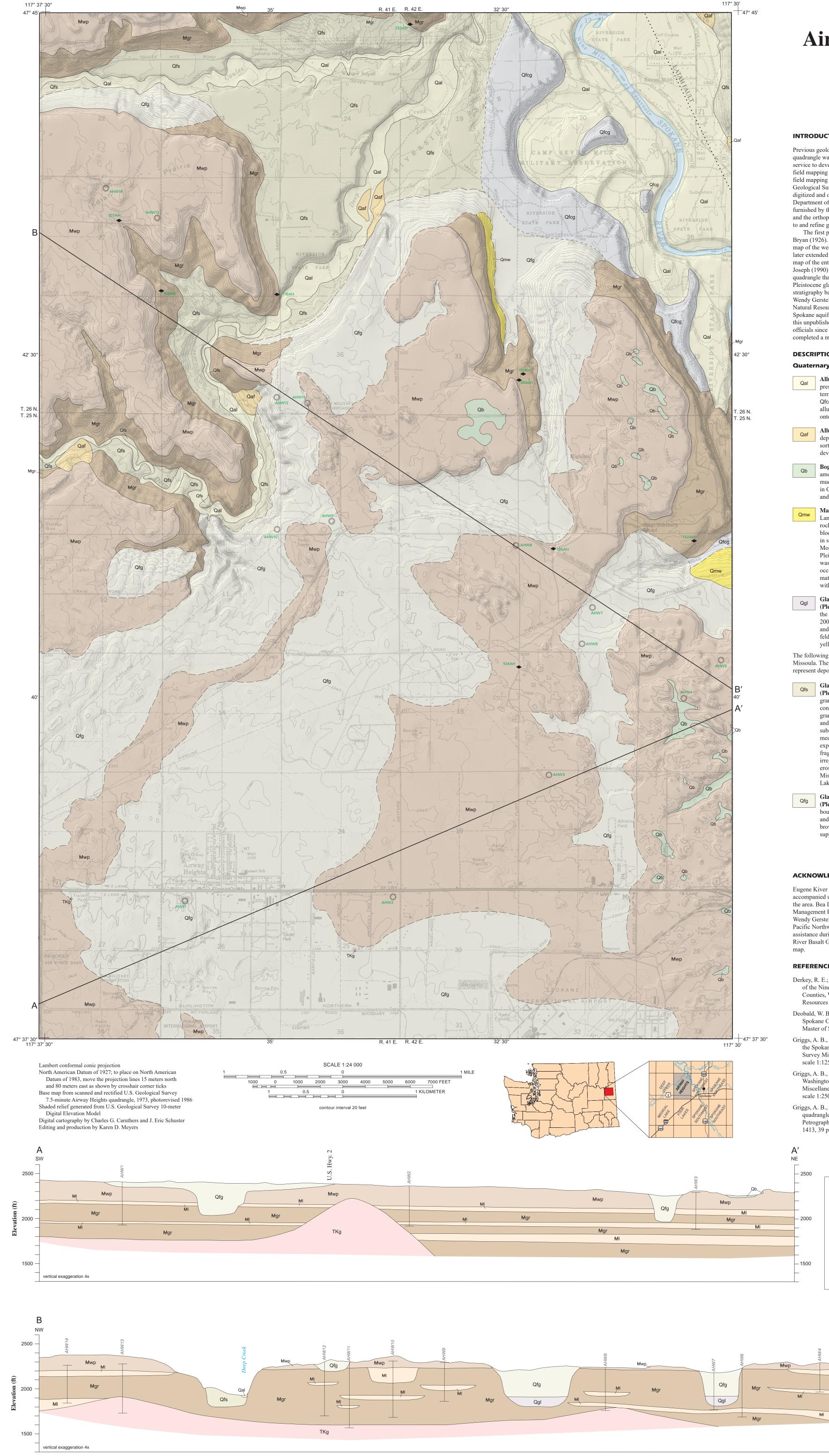


FIGURE 9

GSI Water Solutions, Inc., et. al. 2015 – Map showing Grande Ronde outcrop in Project Area August 2024


McCollum and Pritchard 2012- Geologic structures of the West Plains

August 2024

APPENDIX A Washington State Department of Natural Resources Geologic Map of the Airway Heights 7.5-Minute Quadrangle, Spokane County, Washington

WASHINGTON STATE DEPARTMENT OF Natural Resources oug Sutherland - Commissioner of Public Lands Division of Geology and Earth Resources Ron Teissere - State Geologist

WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES **OPEN FILE REPORT 2004-1**

Geologic Map of the Airway Heights 7.5-minute Quadrangle, **Spokane County, Washington**

by Robert E. Derkey, Michael M. Hamilton, and Dale F. Stradling

2004

INTRODUCTION

Previous geologic map coverage of the Airway Heights 7.5-minute quadrangle was reconnaissance and lacked sufficient detail to be of service to developers and planners in the area. We undertook detailed field mapping of the quadrangle in 1999 and completed it in 2001. Our field mapping and air photo interpretation was drawn on a U.S. Geological Survey topographical map of the quadrangle and then digitized and overlaid on digital orthophotos from the Washington State Department of Natural Resources (1995 edition). Digital contours furnished by the Spokane County geographic information system (GIS) and the orthophotos were then used as supplemental base maps to add to and refine geologic unit contacts on the final version of the map.

The first published geologic map of the area was by Pardee and Bryan (1926). Griggs (1966) completed a 1:125,000-scale geologic map of the western half of the Spokane 1- by 2-degree quadrangle. He later extended his mapping eastward to complete a 1:250,000-scale map of the entire Spokane 1- by 2-degree quadrangle (Griggs, 1973). Joseph (1990) compiled a 1:100,000-scale map of the Spokane quadrangle that incorporated more detailed interpretations of Pleistocene glacial features based on Kiver and others (1979) and basalt stratigraphy based on Swanson and others (1979). In 1993 and 1994, Wendy Gerstel and others of the Washington State Department of Natural Resources mapped the Quaternary deposits related to the Spokane aquifer recharge and aquifer sensitive areas at 1:24,000 scale; this unpublished mapping has been available to Spokane County officials since 1996 through the county's GIS. Deobald (1995) completed a master's thesis on the hydrogeology of the West Plains.

DESCRIPTION OF MAP UNITS

Quaternary Sedimentary Deposits

Alluvium (Holocene)—Silt, sand, and gravel deposits in present-day stream channels, on flood plains, and on terraces; consists of reworked glacial flood deposits (units Qfcg, Qfg, and Qfs) and reworked loess; may include small alluvial fans and minor mass-wasting deposits that extend onto the flood plain from tributaries.

Alluvial fan deposits (Holocene)-Gravel, sand, and silt deposited in fans at the base of steep drainages; very poorly sorted; most lack a large drainage source; minimal soil development.

mostly pebbles and coarse sand; boulders and cobbles consist predominantly of locally derived basalt; found mainly outside of the principal flood channels, which approximate the present courses of the Spokane and Little Spokane Rivers.

Glacial flood-channel deposits, predominantly gravel Qfcg (Pleistocene)—Thick-bedded to massive mixture of boulders, cobbles, pebbles, granules, and sand; may contain beds and lenses of sand and silt; gray, yellowish gray, or light brown; poorly to moderately sorted; both matrix and clast supported; locally composed of boulders and cobbles in a matrix of mostly pebbles and coarse sand; derived from granitic and metamorphic rocks similar to those exposed both locally and to the northeast and east in Idaho. This unit differs from flood gravel (unit Qfg) in that it fills deep, ancestral channels of the Spokane and Little Spokane Rivers, which now form the Spokane Valley-Rathdrum Prairie aquifer. The flood deposits filling the channels are known to be several hundred feet thick. Boundaries between this unit and unit Qfg are based on location of these channels rather than clast-size differences.

Pre-Quaternary Igneous and Sedimentary Rocks

Priest Rapids Member of the Wanapum Basalt, **Columbia River Basalt Group (middle Miocene)**—Dark gray to black, fine-grained, dense basalt consisting of plagioclase (20–30%), pyroxene (10–20%), and olivine (1–2%) in a mostly glass matrix (40–60%). Exposures in the northern part of the map area are less than 100 ft thick and the contact with the underlying Grande Ronde Basalt occurs between 2,200 and 2,300 ft elevation in most of the quadrangle. However, the contact with the underlying Grande Ronde Basalt or Latah Formation extends below 2,200 ft elevation in the southeast corner of the quadrangle. This suggests that a channel existed and was filled with the Priest Rapids Member prior to the basalt spreading out over the terrain at 2,200 ft elevation and higher. Basalt is of the Rosalia chemical type (Table 1), which has higher titanium and lower magnesium and chromium than other flows of Wanapum Basalt (Steve Reidel, Pacific Northwest National Laboratory, oral commun., 1998). This unit is between 14.5 and 15.3 m.y. old and has reversed magnetic polarity (Reidel and others, 1989). Grande Ronde Basalt, magnetostratigraphic units R₂ ₩gr and N₂, Columbia River Basalt Group (middle Miocene)—Dark gray to dark greenish gray, fine-grained basalt consisting of pale green augite and pigeonite grains (10–40%) and plagioclase laths and sparse phenocrysts (10–30%) in a matrix of black to dark brown glass (30–70%) and opaque minerals; locally vesicular with plagioclase laths tangential to vesicle boundaries; some vesicles contain botryoidal carbonate and red amorphous secondary minerals; thickness is quite variable due to irregular underlying topography, variable thickness of water-saturated Latah Formation (unit MI) interbeds, and the invasive nature of at least some of the Grande Ronde Basalt flows in the area; identified in the map area on the basis of chemical analyses (Table 1); between 15.6 and 16.5 m.y. old (Reidel and others, 1989).

Bog deposits (Holocene and Pleistocene)—Peat with lesser amounts of silt, ash, marl (bog lime), and gyttja (freshwater mud with abundant organic matter); located predominantly in Channeled Scabland depressions on basalt bedrock (Milne and others, 1975).

Mass-wasting deposits (Holocene and late Pleistocene)-Landslide debris with lesser amounts of debris-flow and rock-fall deposits; consists mostly of a mixture of basalt blocks and Latah Formation sediments; basalt blocks range in size from several feet to hundreds of feet in diameter. Most mass-wasting events occurred during or shortly after Pleistocene catastrophic flood events, but some mass wasting continued to the present; mass-wasting events that occurred during glacial flooding incorporated flood materials as scattered sand and pebble lenses interspersed with the mass-wasting deposits.

Glaciolacustrine deposits of glacial Lake Columbia (Pleistocene) (cross sections only)—Based on exposures in the adjacent Nine Mile Falls quadrangle (Derkey and others, 2003), consists of silt and fine sand interbedded with clay and silt lakebeds; composed predominantly of quartz, feldspar, and mica grains; very light gray to pinkish or yellowish gray.

The following units are deposits from outburst floods of glacial Lake Missoula. They are a composite of numerous flood events and do not represent deposits from any single flood event.

Glacial flood deposits, predominantly sand

(Pleistocene)—Medium-fine- to coarse-grained sand and granules with sparse pebbles, cobbles, and boulders; may contain beds and lenses of gravel; composed mainly of granitic and metamorphic detritus from sources to the east and of local basalt; gray, yellowish gray, or light brown; subangular to subrounded; poorly to moderately well sorted; medium bedded to massive; appears speckled in some exposures because of the mixture of light and dark fragments; distribution uneven and thickness variable due to irregular underlying topography and varying degrees of erosion; appears to have been deposited when glacial Lake Missoula outburst floods flowed into a high stand of glacial Lake Columbia.

Glacial flood deposits, predominantly gravel (Pleistocene)—Thick-bedded to massive mixture of boulders, cobbles, pebbles, granules, and sand; contains beds and lenses of sand and silt; gray, yellowish gray, or light brown; poorly to moderately sorted; both matrix and clast supported; locally composed of boulders in a matrix of

ACKNOWLEDGMENTS

Eugene Kiver of Eastern Washington University, Geology Department, accompanied us on numerous trips to examine Quaternary deposits in the area. Bea Lackaff of the Spokane County Water Quality Management Program digitized the unpublished geologic mapping of Wendy Gerstel and others into Spokane County's GIS. Steve Reidel of Pacific Northwest National Laboratory (Richland, Wash.) provided assistance during a two-day visit in the field to examine Columbia River Basalt Group stratigraphy and reviewed an earlier version of the

REFERENCES CITED

Derkey, R. E.; Hamilton, M. M.; Stradling, D. F., 2003, Geologic map of the Nine Mile Falls 7.5-minute quadrangle, Spokane and Stevens Counties, Washington: Washington Division of Geology and Earth Resources Open File Report 2003-8, 1 sheet, scale 1:24,000.

Deobald, W. B., 1995, Hydrogeology of the West Plains area of

Latah Formation (middle Miocene) (cross sections MI only)—Based on numerous exposures in the Spokane area, consists of lacustrine and fluvial deposits of finely laminated siltstone, claystone, and minor sandstone; light gray to yellowish gray and light tan; commonly weathers brownish yellow with stains, spots, and seams of limonite; poorly indurated; unconformably overlies pre-Miocene rocks or is interbedded with Grande Ronde Basalt (unit Mgr); easily eroded and commonly blanketed by colluvium, talus, and residual soils; floral assemblages indicate a Miocene age (Knowlton, 1926; Griggs, 1976).

Hornblende biotite granitic rock (Tertiary to TKg Cretaceous)—Medium-grained granitic rock; contains biotite crystals up to 0.2 in., hornblende, and minor zircon; light gray with some light-pink feldspars; porphyritic in part, with feldspar crystals up to 0.5 in.; only two small exposures in the quadrangle.

GEOLOGIC SYMBOLS

----- Contact-Long dashed where approximately located; short dashed where inferred or indefinite

••••• Fault—Concealed

AHW11 Water well—Numbers correspond to well numbers on cross sections

Basalt geochemistry sample location—Numbers correspond to sample numbers in Table 1

Johnson, D. M.; Hooper, P. R.; Conrey, R. M., 1999, XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead: Advances in X-ray Analysis, v. 41, p. 843-867.

Joseph, N. L., compiler, 1990, Geologic map of the Spokane 1:100,000 quadrangle, Washington-Idaho: Washington Division of Geology and Earth Resources Open File Report 90-17, 29 p., 1 plate.

Kiver, E. P.; Rigby, J. G.; Stradling, D. F., 1979, Surficial geologic map of the Spokane quad, Washington: Washington Division of Geology and Earth Resources Open-File Report 79-11, 1 sheet, scale 1:250,000.

Knowlton, F. H., 1926, Flora of the Latah Formation of Spokane, Washington, and Coeur d'Alene, Idaho. In Shorter contributions to general geology 1925: U.S. Geological Survey Professional Paper 140-A, p. 17-81.

Milne, S. S.; Hayashi, S. K.; Gese, D. D., 1975, Stratigraphy of scabland meadows in southeast Spokane County [abstract]: Northwest Scientific Association, 48th Annual Meeting, Program and Abstracts, abstract no. 81. Pardee, J. T.; Bryan, Kirk, 1926, Geology of the Latah Formation in

Spokane County, Washington: Eastern Washington University Master of Science thesis, 202 p.

- Griggs, A. B., 1966, Reconnaissance geologic map of the west half of the Spokane quadrangle, Washington and Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-464, 1 sheet, scale 1:125,000.
- Griggs, A. B., 1973, Geologic map of the Spokane quadrangle, Washington, Idaho, and Montana: U.S. Geological Survey Miscellaneous Geologic Investigations Series Map I-768, 1 sheet, scale 1:250,000.
- Griggs, A. B., 1976, The Columbia River Basalt Group in the Spokane quadrangle, Washington, Idaho, and Montana; with a section on Petrography, by D. A. Swanson: U.S. Geological Survey Bulletin 1413, 39 p., 1 plate.

Disclaimer: This product is provided 'as is' without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties o merchantability and fitness for a particular use. The Washington Department of Natural Resources will not be liable to the user of this product for any activity involving the product with respect to the following: (a) lost profits, lost savings, or any other consequential damages; (b) the fitness of the product for a particular purpose; or (c) use of the product or results obtained from use of the product. This product is considered to be exempt from the Geologist Licensing Act [RCW 18.220.190 (4)] because it is geological research conducted by the State of Washington, Department of Natural Resources, Division of Geology and Earth Resources.

B'

2500

2000

1500

- relation to the lavas of the Columbia Plateau near Spokane, Washington. In Shorter contributions to general geology 1925: U.S. Geological Survey Professional Paper 140, p. 1-16.
- Reidel, S. P.; Tolan, T. L.; Hooper, P. R.; Beeson, M. H.; Fecht, K. R.; Bentley, R. D.; Anderson, J. L., 1989, The Grande Ronde Basalt, Columbia River Basalt Group; Stratigraphic descriptions and correlations in Washington, Oregon, and Idaho. In Reidel, S. P.; Hooper, P. R., editors, Volcanism and tectonism in the Columbia River flood-basalt province: Geological Society of America Special Paper 239, p. 21-53.
- Swanson, D. A.; Anderson, J. L.; Bentley, R. D.; Byerly, G. R.; Camp, V. E.; Gardner, J. N.; Wright, T. L., 1979, Reconnaissance geologic map of the Columbia River Basalt Group in eastern Washington and northern Idaho: U.S. Geological Survey Open-File Report 79-1363, 26 p., 12 plates.

 Table 1. Geochemical analyses of Columbia River Basalt Group basalt performed by x-ray fluorescence at
 the Washington State University GeoAnalytical Lab. Instrumental precision is described in detail in Johnson and others (1999). Total Fe is expressed as FeO

MAJOR ELEMENTS—UNNORMALIZED (in weight percent)

S	ample no.	SiO ₂	Al_2O_3	TiO ₂	FeO	MnO	CaO	MgO	K_2O	Na ₂ O	P_2O_5	Total

Priest Rapids Member of the Wanapum Basalt (unit ₩wp)

104AH	50.96	14.01	3.976	12.57	0.225	9.17	3.29	1.30	3.04	0.886	99.42
105AH	50.24	12.82	3.637	14.89	0.248	8.57	4.61	1.32	2.76	0.798	99.89
107AH	50.60	12.92	3.663	14.39	0.228	8.71	4.29	1.28	2.75	0.802	99.63

Grande Ronde Basalt (unit Hgr)

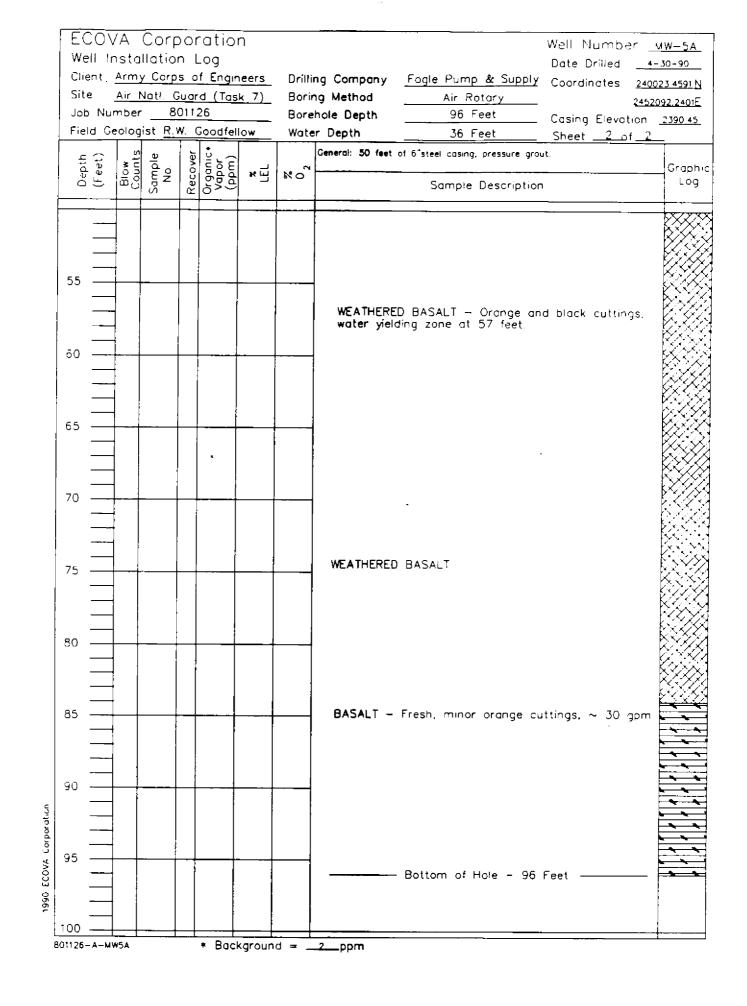
108AH 54.23 14.22 1.850 10.89 0.193 8.86 4.78 1.29 2.83 0.304 99.45 115AH 1.890 11.47 0.210 8.65 4.75 1.26 2.97 0.374 99.34 53.85 13.91 8.75 0.372 99.66 116AH 54.11 1.875 11.33 0.206 4.77 1.30 2.91 132AH 53.58 14.22 1.840 10.82 0.194 8.90 4.79 1.27 2.72 0.301 98.64 133AH 54.05 13.16 2.429 13.10 0.214 7.09 3.33 1.84 3.09 0.424 98.73 SRAH1 53.8 14.17 1.842 11.19 0.193 8.92 4.69 1.29 3.12 0.299 99.52

TRACE ELEMENTS (in parts per million)

Sample no.	Ni	Cr	Sc	V	Ba	Rb	Sr	Zr	Y	Nb	Ga	Cu	Zn	Pb	La	Ce	Th
------------	----	----	----	---	----	----	----	----	---	----	----	----	----	----	----	----	----

Priest Rapids Member of the Wanapum Basalt (unit Hwp)

14 35 48 460 641 28 317 231 56 20.2 24 26 165 9 28 68 3 104AH 105AH 558 30 282 215 50 18.2 21 25 151 5 25 54 2 107AH 430 571 31 294 214 51 19.3 26 25 156 6 35 67 5 17 34


Grande Ronde Basalt (unit Hgr)

12 50 35 322 502 29 309 152 34 11.1 18 34 108 11 23 34 2 108AH 160 35 11.9 22 34 119 7 11 44 2 115AH 158 36 11.2 21 33 117 8 3 27 4 116AH 332 547 29 313 154 35 12.4 21 24 107 7 14 42 5 132AH 133AH 4 20 42 365 718 44 324 186 39 13.2 19 0 128 11 28 48 6 SRAH1 22 57 39 324 509 31 318 160 35 13 18 35 112 5 14 39 5 APPENDIX B Boring Logs and Well Construction

Weil Installiction Log Oote Driked							atio	n				Well Number	MW-5A
Site Ar. Notl. Curd. (Task 7). Boring Method Air Rotary Casing Elevation 2002120E Job Number Boring Method 36 Feet Casing Elevation 20022.5E Field Geologist R.W. Coordielow Work Peth 36 Feet Sheet _ lot 2 India Geologist R.W. Coordielow Work Peth 36 Feet Sheet _ lot 2 India Geologist R.W. Coordielow Work Peth Somple Description Complete India Geologist R.W. Coordielow Work Peth Somple Description Complete India Geologist R.W. Coordielow Work Peth Somple Description Complete India Geologist R.W. Coordielow Work Peth Somple Description Complete India Geologist R.W. Coordielow Work Peth Somple Description Coordienter India Geologist R.W. Coordielow Work Peth Somple Description Coordienter India Geologist R.W. Coordielow Work Peth Somple Description Coordienter India Geologist R.W. Coordielow Somple Description Coordienter Coordienter India Geologist R.W. Coordielow Somple Description Coordienter Coordienter India Geologist R.W. Coordielow Somple Description Coordienter Coordienter India Geologist R.W. Coordielow Somple Descri													
bit Ar. Noti. Curry (Task 7) Boring Method Air Rotary Cusang Elevation 20202 2005 Job Number Boring Method Borehole Depth 96 Feet Cosing Elevation 2300-15 Heid Geologist R.W. Coadfellow Worer Depth 36 Feet Cosing Elevation 2300-15 Heid Geologist R.W. Coadfellow Worer Depth 36 Feet Cosing Elevation 2300-15 Heid Geologist R.W. Coadfellow Worer Depth 36 Feet Cosing Elevation 2300-15 Heid Geologist R.W. Coadfellow Worer Depth 36 Feet Cosing Elevation 2300-15 Heid Geologist R.W. Coadfellow Worer Depth 36 Feet Cosing Elevation 200-15 SAND (SM) - Fine- to coarse-grained, brown, losse, basolit fragments, domo Lori 2 SAND (SM) - Fine- to coarse-grained, brown, domo 10 SAND (SM) - Fine- to coarse-grained, brown, domo WEATHERED BASALT - Cray to brown, dry, loose 20 20 SAND (SM) - Fine- to coarse-grained, brown, semi- 20 SAND (SM) - Fine- to coarse-grained, brown, semi- 21 SAND (SM) - Fine- to coarse-grained, brown, semi- 20 SAND (SM) - Fine- to coarse-grained, brown, semi- 23 SAND (SM) - Fine- to coarse-grained, brown, semi- 20 SAND (SM) - Fine- to coarse-grained, brown, semi- 24 SAND (SM									Drilli	ng Company	<u>Fogle Pump & Supply</u>	Coordinates <u>240</u>	023 4591 N
Field Geologist R.W. Goodfellow Water Depth J6 Freet Sheet L of 2		i i	-					<u>k 7)</u>		ng Method	Air Rotary		
Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Image: Static water level at 36 feet. Ima										-	96 Feet	Casing Elevation	2390.45
SAND (SM) = Fine= to coarse=gramed, prown, losse, basalt fragments. 10 10 10 11 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 <tr< td=""><td></td><td>Fiel</td><td></td><td>1</td><td></td><td><u>N. (</u></td><td>Goodfel</td><td></td><td>Wate</td><td>T</td><td></td><td></td><td>_</td></tr<>		Fiel		1		<u>N. (</u>	Goodfel		Wate	T			_
SAND (SM) = Fine= to coarse=gramed, prown, losse, basalt fragments. 10 10 10 11 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 <tr< td=""><td></td><td>3</td><td>(j</td><td>v nts</td><td>e le</td><td>ver</td><td>ie z C</td><td></td><td></td><td>General: 50 feet o</td><td>of 6"steel casing, pressure grav</td><td>it.</td><td></td></tr<>		3	(j	v nts	e le	ver	ie z C			General: 50 feet o	of 6"steel casing, pressure grav	it.	
SAND (SM) = Fine= to coarse=gramed, prown, losse, basalt fragments. 10 10 10 11 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 <tr< td=""><td></td><td>lèp</td><td>Fee</td><td>Blo</td><td>ц Ч N</td><td>SCO</td><td></td><td>×Ц</td><td>~~~~</td><td></td><td></td><td>π</td><td></td></tr<>		lèp	Fee	Blo	ц Ч N	SCO		×Ц	~~~~			π	
5					۰ آ	αž	٥×~		 				
15 WEATHERED BASALT - Gray to brown, dry, loose 20 SAND (SM) - Fine- to coorse-grained, brown, dame 25 CLAY WITH SILTY AND SAND (CL) - Brown, semi-plastic, damp. 30 Yearner 30 Yearner 40 Yearner 41 Yearner 42 Yearner	i	5					2			SAND (SM) basalt fragr	- Fine- to coarse-gro ments.	bined, brown, loos	a.
20 WEATHERED BASALT - Gray to brown, dry. loose 20 SAND (SM) - Fine- to coarse-grained, brown, dame 25 CLAY WITH SILTY AND SAND (CL) - Brown, semi-plastic, damp. 30 Year Jeack, mixed with brown clay. 40 WEATHERED BASALT - Black, mixed with brown clay. 40 WEATHERED BASALT - Black, mixed with brown clay. 41 WEATHERED BASALT - Black, mixed with brown clay. 42 1 43 1 44 1 45 1 45 1 46 1 47 WEATHERED BASALT - Black, mixed with brown clay. Water yielding zone at 40 feet. WEATHERED BASALT - Black, water.		10								SAND (SM) loose, mind) — Fine— to coarse—gr or gravel, some wood fi	ained, dark brown ragments, damp	
25 SAND (SM) - Fine- to coarse-grained, brown, damp 30 CLAY WITH SILTY AND SAND (CL) - Brown, semi-plostic, damp. 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 30 Sand (SM) - Fine- to coarse-grained, brown, damp 31 Sand (SM) - Fine- to coarse-grained, brown, semi-plostic, damp. 40 Sand (SM) - Fine- to coarse-grained, brown clay. 40 WEATHERED BASALT - Black, mixed with brown clay. 41 WEATHERED BASALT - Black, water. 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1		15								WEATHERED	BASALT - Gray to bro	own, dry, loose	
30 SAND (SM) - Fine- to coarse-grained, brown, damp 30 CLAY WITH SILTY AND SAND (CL) - Brown, semi-plastic, damp. 35 Static water level at 36 feet. 40 WEATHERED BASALT - Black, mixed with brown clay. 40 WEATHERED BASALT - Black, mixed with brown clay. 41 WEATHERED BASALT - Black, mixed with brown clay. 45 1 50 1		20											
30		25								SAND (SM)	- Fine- to coarse-gro	ined, brown, dami	
40 40 40 40 40 40 40 40 50 40 40 40 40 40 40 40 40 40 4		30										- Brown, semi-	
40 40 40 40 40 40 40 40 40 40		35								¥ Static wat	er level at 36 feet.		
50 1	οŭ	40								ary. Water yieldi	ing zone at 40 feet.		
50 1	OVA Corporati	45								WEATHERED	DASALI — Biack, wate		
	1990 EC(50					1						
	٤		-A-MW		1		* Baci	karoun	d =				

.____

.

	DRILLING TIMES: START <u>0745 4/3</u> 0/90 FINISH <u>1207 4/3</u> 0/90 STANDBY of DOWN TIME:	
	METHOD OF DECON. PRIOR TO DRILLING	
		<u> </u>
	METHOD OF DEVELOPMENT: DISPLACEMENT PUMPING	
	PUMP TIME 0830 TIME 1230	DATE 5/29,
	PUMPED 4 BARRELS IN 4 HOURS	
TOP OF CASING ELEVATION _2390.45'_	AFTER	
	ODOR IN WATER ?	
BORING DIAMETER <u>5</u> IN. B WELL DEPTH <u>96</u> FT C WELL STICKUP <u>0</u> FT. D BLANK INTERVAL <u>84</u> FT.	WATER GROUND SURFACE DISCHARGED STORM SEWERS TO:4 ORUMS	
BLANK DIAMETER <u>2</u> IN. E SCREEN INTERVAL <u>81–91'</u> FT.	DEPTH OF WATER AFTER DEVELOPMENT: 30.5	
SCREEN DIAMETER IN.	MATERIALS USED	
TYPE/SLOT SIZE <u>0.01</u> F SEDIMENT TRAP <u>3.</u> FT. G ANNULAR SEAL <u>69</u> FT.	4 1/2 SACKS of	_ SAND
MATERIAL: <u>GROUT</u> H. BENTONITE SEAL <u>5</u> FT.	GALLONS of GROUT USED GROUT COMPOSITION	-
SANDPACK <u>19</u> FT. TYPE/SIZE: <u>20/40</u>	YARDS CEMENT - SAND USED CENTRALIZERS at 18, 46, 74, AND 92 FEET	- BCS
J BOTOM SEAL/PACK <u>2 </u> FT. MATERIAL <u>SAND</u>		_ 505
K WELL COVER PT	WELL COVER USED: Above Grade	
	Other	
L STICKUP FT.	X Lockable	

~

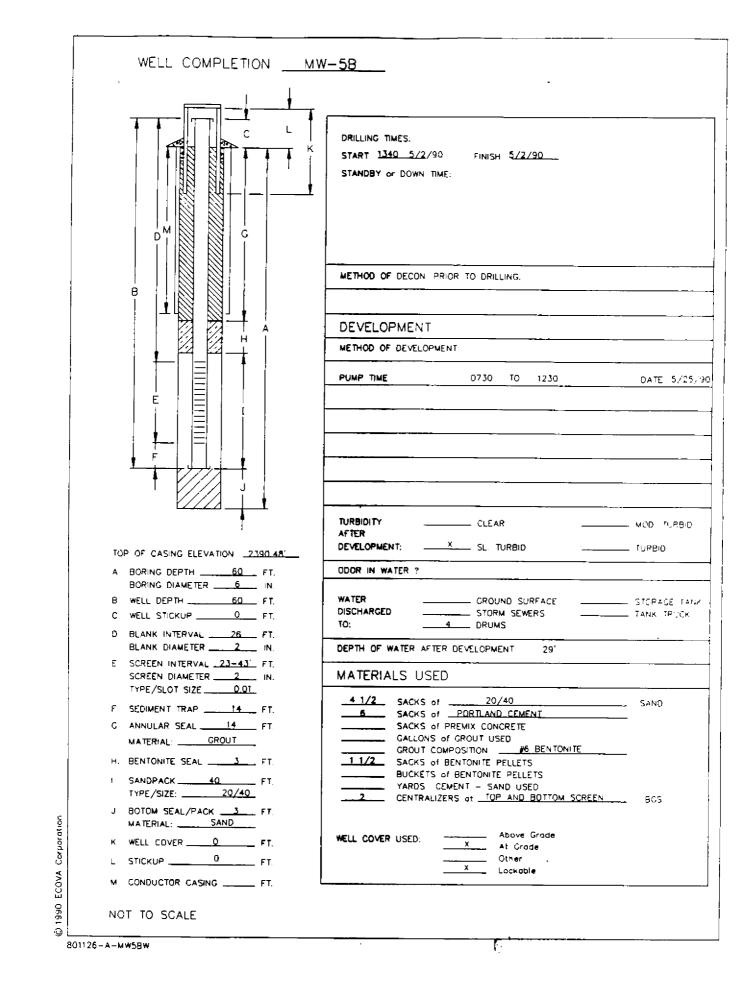
				ratio	n				Well Number	
	Instal Army			Log I <u>f Eng</u> in		D-200		Facto Dump & Sugal		5-2-90
Site				<u>d (Tas</u>			ng Company ng Method	Fogle Pump & Supply Air Rotary		
	umber)11;		<u>K /)</u>		hole Depth	50 Feet		2104 0267E
				Goodfe	llow		er Depth	26 Feet	Casing Elevation	
			-						Sheetof	<u> </u>
Depth (Feet)	Blow Counts	Sample No.	ove	Organic Vapor (ppm)	LE X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Graphi
d E	කි ර	Р Z	Rec	55.0	- 7			Sample Description		Log
	-									
							pebbles, ic) — Fine— to coarse—gr lose.	ained, minor bas	arti i i i
ļ —										
5 —	+		-							
		Í								
			i							
	-									
10			_	· · ·			SAND WITH	l GRAVEL (SM) - Fine- omposed of basalt chip	to coarse-grain.	ed.
	- {						graver is c	Shiposed of busult chip	5, DEOWIL, 10056	
	- 1						- - -			
15 —										
	- 1									
	-									
]									
20 —	+	.	_							- 1777 - 1777
										1 1
										12
	-									
25 —							V Static wat	r (CL) - Brown, semi-p er level at 26 feet.	Mastic, aamp	199
	-							e level di 20 leet.		14.6
	-									
30 <u> </u>	┨									
	-				ŀ	ľ				
	-									
	-									
35 —	-		-	- +						
]	Ì								
	-						BASALT -	Fresh, damp.		
40 —										
	$\downarrow \top$									
	-			1						
]									
45 —	+		-+							
							WEATHERED	BASALT.		X and
	-	1								
<u> 50 </u>										

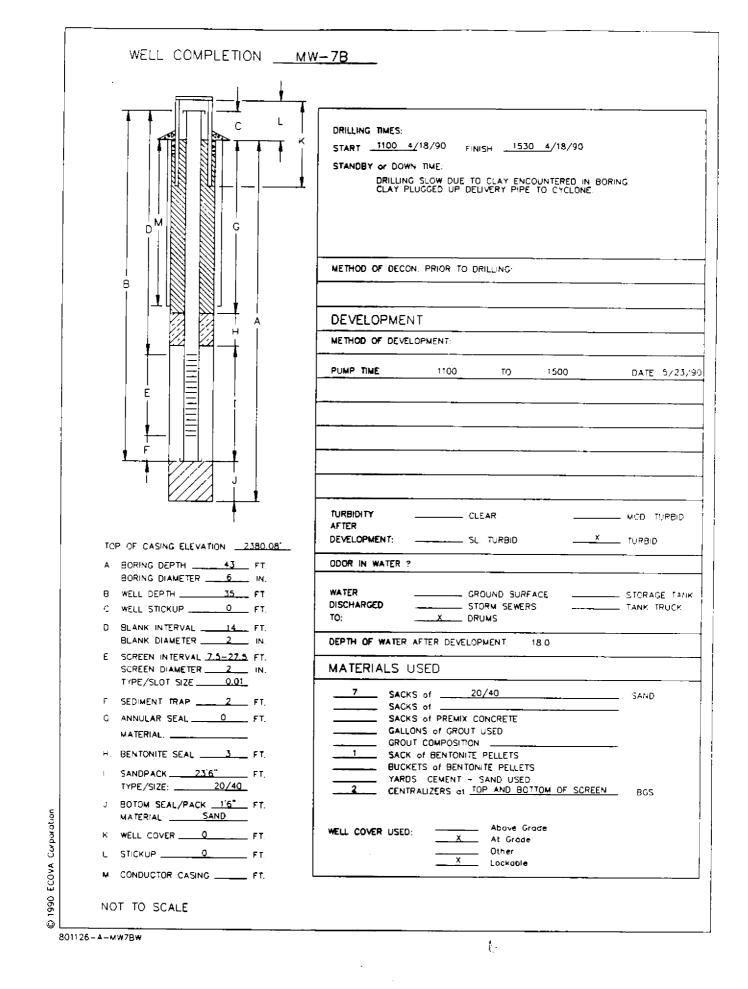
.

·

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

-


~


 \sim

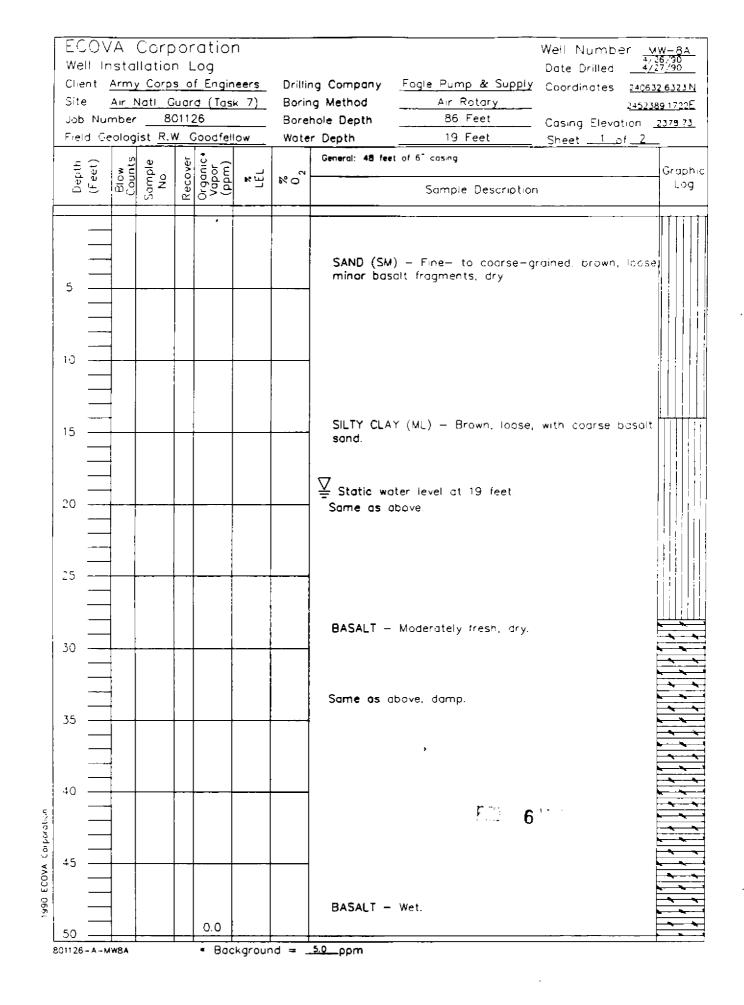
60 65		ologi	80 st_R			<u>k 7)</u>	Bore	ng Method hole Depth r Depth	Fogle Pump & Supply Air Rotary 60 Feet 26 Feet		2104 0267E 2390 48
60	(Feet)	Blow Counts	Sample No.	Recover	Organic• Vapor (ppm)	EL ×	°0%	General:		n	Graphic Log
70 75 80 85 90 95								Water yiel	D BASALT – To bottor ding zone at ~30 gpm – Bottom of Hole – 60	n of hole.	
100									<u>6.</u>		

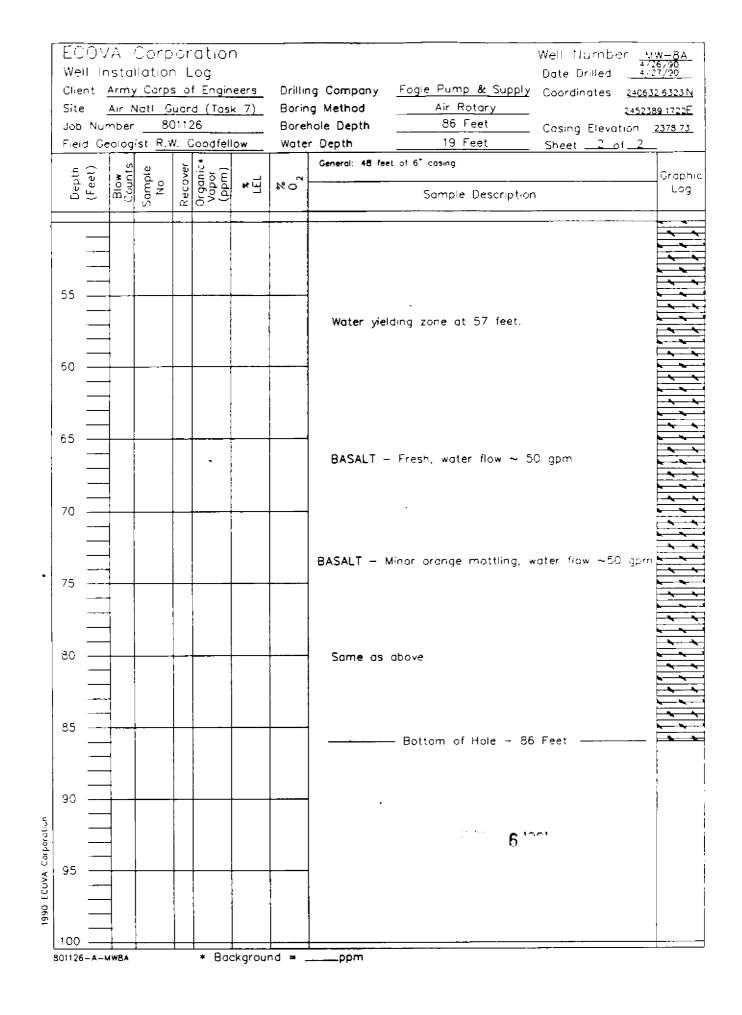
~

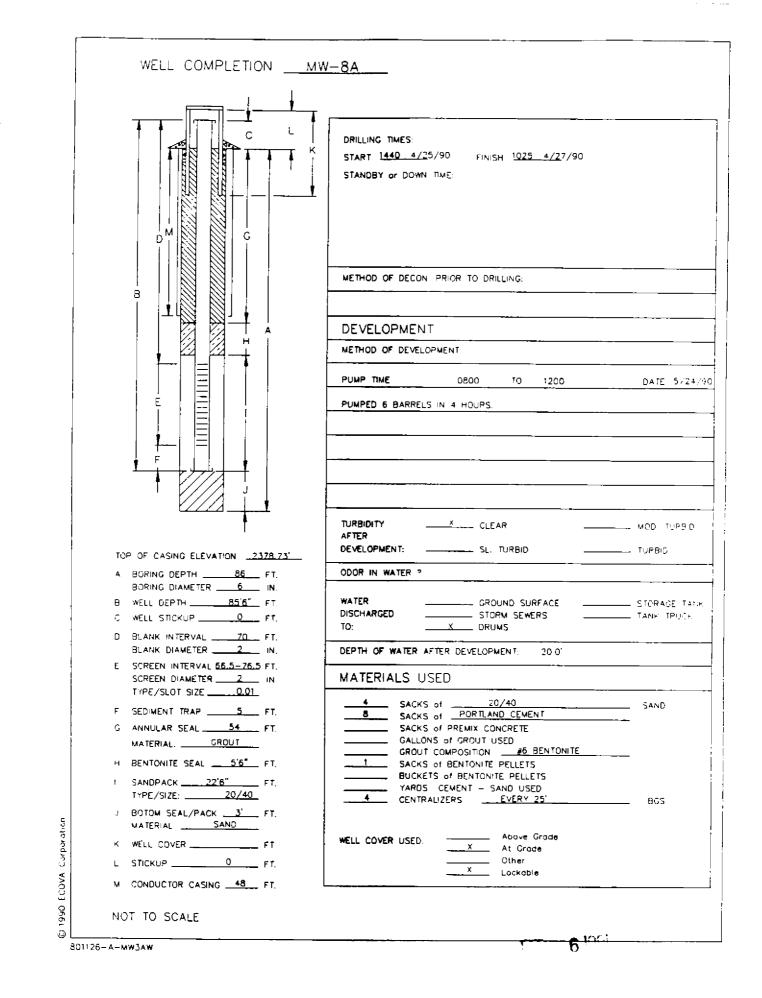
_

Well Installction Log Drilling Company Fogle Pump & Suppi Coordinates 2058/3580 Site Arr Noti Guard (Task 7) Boring Method Air Ratery Coordinates 2058/3580 Job Number S01126 Boring Method Boring Method Air Ratery Coordinates 2058/3580 Fried Coordinates Site Arr Noti Guard (Task 7) Boring Method Boring Method Casing Elevation 2058/3580 Fried Coordinates Site Arr Noti Guard (Task 7) Mode Site Coordinates Site Arr Noti Guard (Task 7) Coordinates 2058/3580 Site Arr Noti Guard (Task 7) Mode Site Coordinates Site Arr Noti Guard (Task 7) Mode Site Coordinates 2058/3580 Coordinates 2058/3580 Site Site Coordinates Site Coordinates Site Coordinates Site Coordinates 2058/3580 Coordinates <		EC	COV	Ά	Corp	or	ation	<u>ר</u>				Well Number _	<u>MW-7</u> B
Clent Army Corps of Engineers Dolling Company Fold Pump & Supply Coordinates 2023.1183.11 Site Ar Nott. Gurd (Top: 7) Bornhol Depth 4.3 Feet Cosing Elevation 28008. Job Number Solid Cosing (Top: 7) Bornhol Depth 18.0 Feet Cosing Elevation 28008. Field Ceologist K. May Water Depth 18.0 Feet Sheet Laf Grade Solid Cosing (Top: 7) Grade Solid Cosing (Top: 7) Grade Solid Cosing (Top: 7) Grade Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Grade Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) Solid Cosing (Top: 7) So		We	ell In	ista	llatio	n L	og						
Site Ar Net: Guard (Task 7) Boring Method Ar Rotary 2432023586E Job Number 801126 Borenot Depth 43 Feet Casing Elevation 2080 Elevation Set Sheet Lot 1 Casing Elevation 2080 Elevation Set Set Sheet Lot 1 Casing Elevation 2080 Elevation Set Set Set Set Set Set Set Elevation Set Set Set Set Set Set Set Sample Description Sample Description Convert 24 feet of 6' steet casing Graphic Sample Description Sample Description Log Set Set Sample Description Sample Description Set Set Set Set Sample Description Sample Description Set Set Set Set Sample Desc			•			Drilling Company Fogle Pump & Supply Coordinates 24				763.7185 N			
Field Geologist K. May Water Depth 18.0 Feet Change Lot 1 E S and E E E E E E E E E E E E E E E E E E E											Air Rotary		
Image: State of the state camp. Craphic State camp. Craphic State camp. S Image: State camp. Sample Description Craphic Log S Image: State camp. Sample Description Craph. S Image: Sample Description Image: Sample Description Craph. S Image: Sample Descripti		1										Casing Elevation	2380.08
5 1.0 SAND WITH GRAVEL (SM) - Medium - to coarse- grained, brown, minor black basalt chops, loose At 6 feet encountered boulder, pulled 8 feet of casing and set 20 foot length. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 21 22 23 30 31 32 43		Fiel					May		Wate	-		Sheetf1	_
5 1.0 SAND WITH GRAVEL (SM) - Medium - to coarse- grained, brown, minor black basalt chops, loose At 6 feet encountered boulder, pulled 8 feet of casing and set 20 foot length. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 21 22 23 30 31 32 43		≘	0	s to	le	, ě				General: 24 feet	af 6° steel casing.		
5 1.0 SAND WITH GRAVEL (SM) - Medium - to coarse- grained, brown, minor black basalt chops, loose At 6 feet encountered boulder, pulled 8 feet of casing and set 20 foot length. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 21 22 23 30 31 32 43		Dép	(Fee	Blo	ц о И	eco	5 g d	LEL	80		Sample Description		
10 1.0 SAND WITH CRAVEL (SM) - Medium- to coarse- greined, brown, minor black boaldt chups, loose 10 10 Image: Sand set 20 foot length. 10 Image: Sand set 20 foot length. Sand set 20 foot length. 10 Image: Sand set 20 foot length. Sand set 20 foot length. 10 Image: Sand set 20 foot length. Sand set 20 foot length. 10 Image: Sand set 20 foot length. Sand set 20 foot length. 10 Image: Sand set 20 foot length. Sand set 20 foot length. 20 Image: Sand set 20 foot length. Sand set 20 foot length. 20 Image: Sand set 20 foot length. Sand set 20 foot length. 20 Image: Sand set 20 foot length. Sand set 20 foot length. 20 Image: Sand set 20 foot length. Image: Sand set 20 foot length. 20 Image: Sand set 20 foot length. Image: Sand set 20 foot length. 20 Image: Sand set 20 foot length. Image: Sand set 20 foot length. 20 Image: Sand set 20 foot length. Image: Sand set 20 foot length. 30 Image: Sand set 20 foot length. Image: Sand set 20 foot length. 40 Image: Sand set 20 foot length. Image: Sand set 20 foot length.					S.	œ	<u>°</u>					·	
40 40 40 40 40 40 40 40 40 40		5 10 15 20 25					1.0			grained, br At 6 feet casing and SAND, SILT amount of ∑ Static SAND loose, WEATHERED Reddish bro	GRAVEL (SM) - Mediu rown, minor black basal encountered boulder, pi set 20 foot length. , AND GRAVEL (BASALT gravel with granitic(?) ; water level at 18 feet (SM) - Coarse-grained wet, petroleum odor. BASALT(?) - Reddish	m— to coarse— t chips, loose ulled 8 feet of) — Loose, trace composition d, dark gray,	
45 Bottom of Hole - 43 Feet		35											
		40											
	VA Corporation	45		~							Bottom of Hole - 43 f	Feet	
	ECO												
	990												
	-	50	\neg										
801126-A-MW78 * Background = <u>10 ppm</u>	L				ł		* Pack			10		······································	<u> </u>

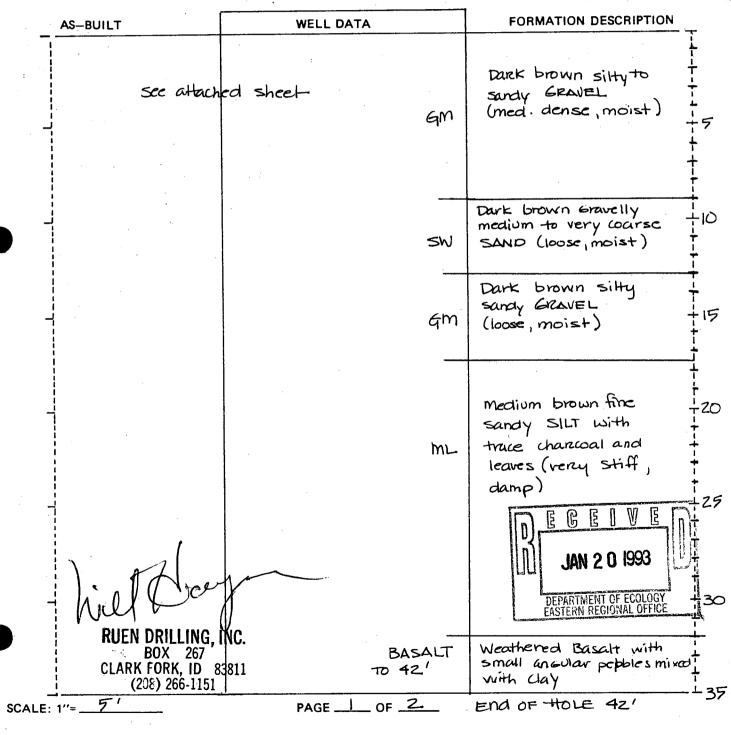
s.



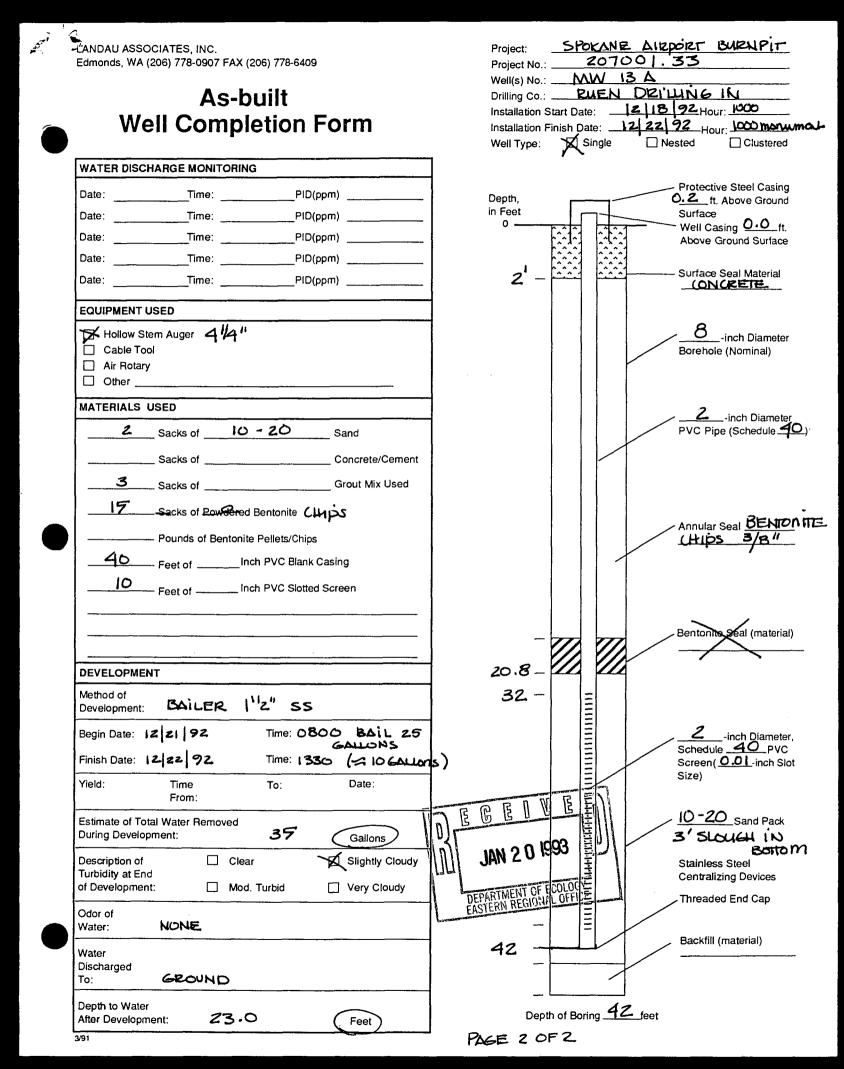

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report. .


-

-



START CARD NO. 7709 PROJECT NAME: SPOKANE AIRPORT BURN PIT County -LOCATION: T24N,R 42E SEC. 6 ELL INDENTIFICATION NO. ______MW13 _ 1/4 NE NE RILLING METHOD: 44" HOLLOW STEM AUGER & AIR POTARY DISTANCE: (W) 112 FT. FROM N/S SECTION LINE (2035) FT. FROM E/W SECTION LINE (5)450 WILL HAVES DRILLER: __ RUEN DRILLING, INC (RIENCOI 1750 DATUM: USGS MONUMENT 250' SOUTH OF RUNWAY FIRM: 2,357.11 (23')WATER LEVEL ELEVATION: __ SIGNATURE: 12 18 92 INSTALLED: ASSOCIATES INC. CONSULTING FIRM: LANDAU 12 22 92 REPRESENTATIVE: DEB SUINELL DEVELOPED:


Report.

Ecology does NOT Warranty the Data and/or the Information on this Well

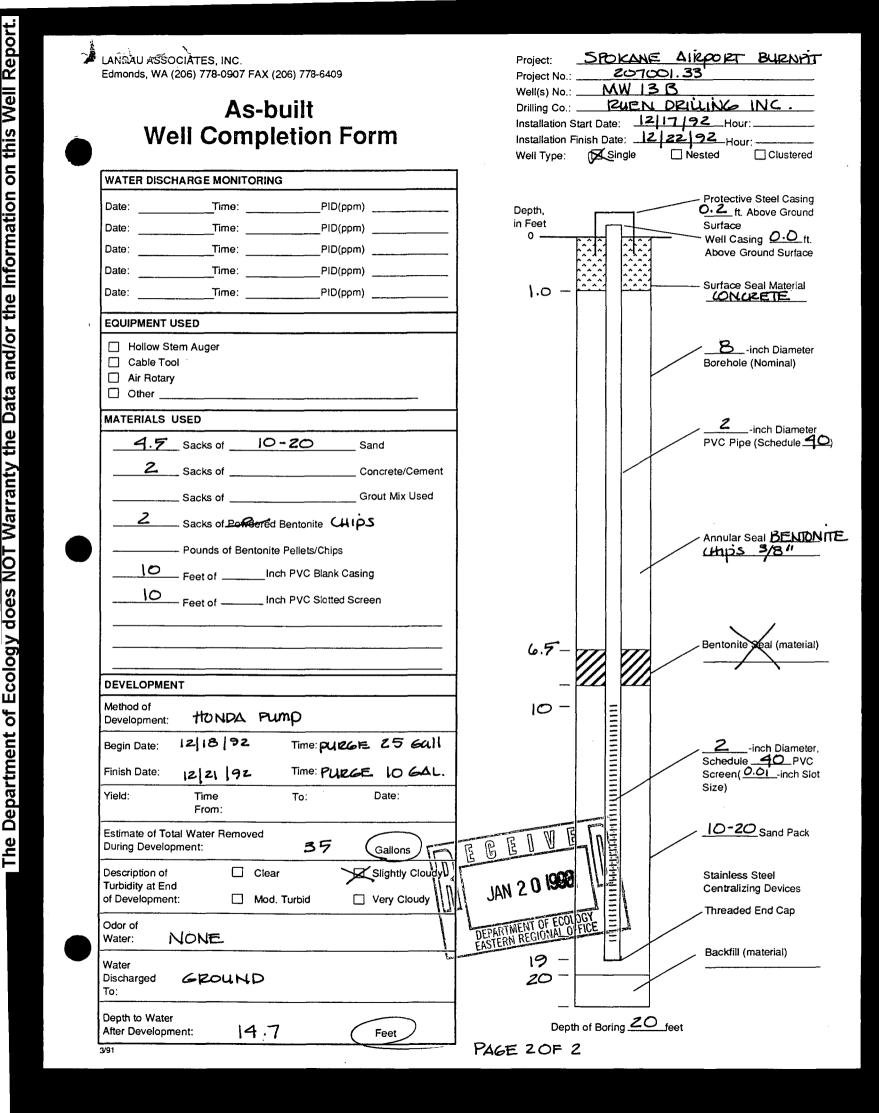
The Department of

Ĵ.

i s

·	START CARD NO. 57709
ON: T <u>29 N</u> , R <u>42E</u>	SEC. 4 14 NE 14 1
CE: (W) 112 FT.	FROM N/S SECTION LINE

RILLING METHOD: 44" HOLLOW STEM AUGER
DRILLER: WILL HAVES (2035)
FIRM: RUEN DRILLING (RUENCDI 175 QM)
SIGNATURE:
CONSULTING FIRM: LANDAU ASSOCIATES INC.
REPRESENTATIVE: DEB SUMEL

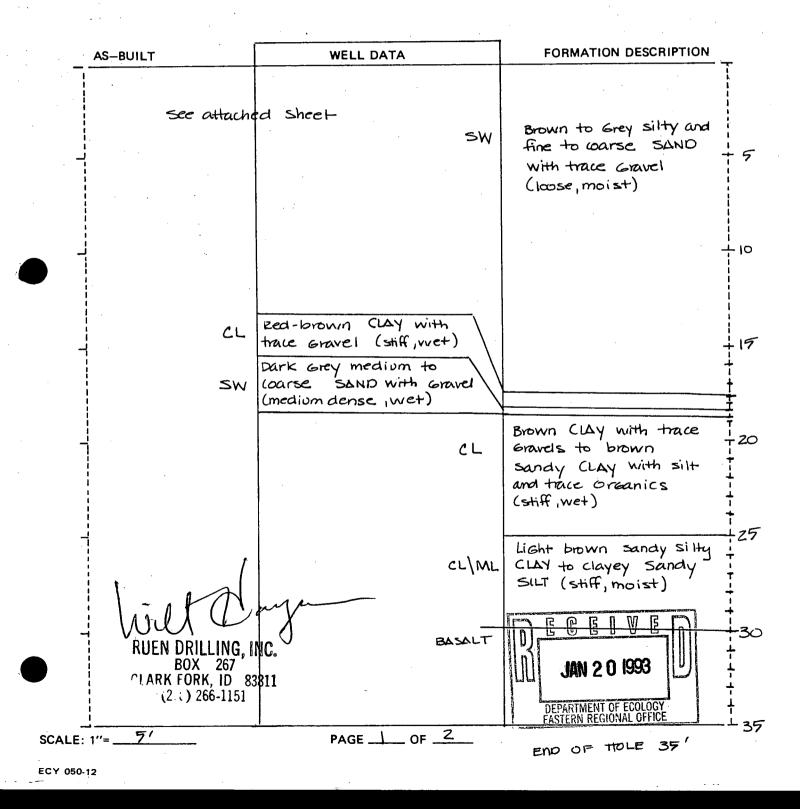

PROJECT NAME: SPOKAME AIRPORT BURNPIT

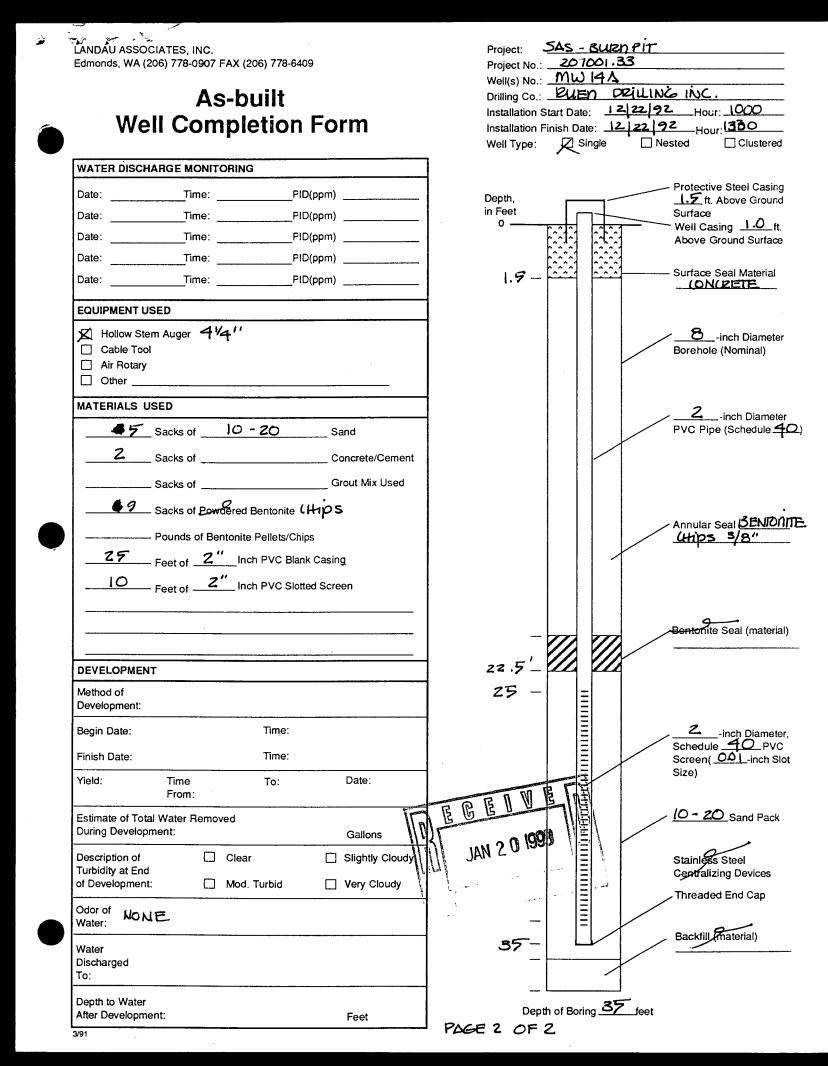
ELL INDENTIFICATION NO. _______ MW 13B

į

LOUNTY NE LOCATION: TZAN, R 42E, SEC. 6 1/4 NE 1/4 NE
DISTANCE: (W) 112 FT. FROM N/S SECTION LINE
(S) 450 FT. FROM E/W SECTION LINE
DATUM: USGS MONUMENT 250' SOUTH OF RUNDAY
WATER LEVEL ELEVATION: (14.7) $z_1366.7'$
INSTALLED:
DEVELOPED: 12/21/92

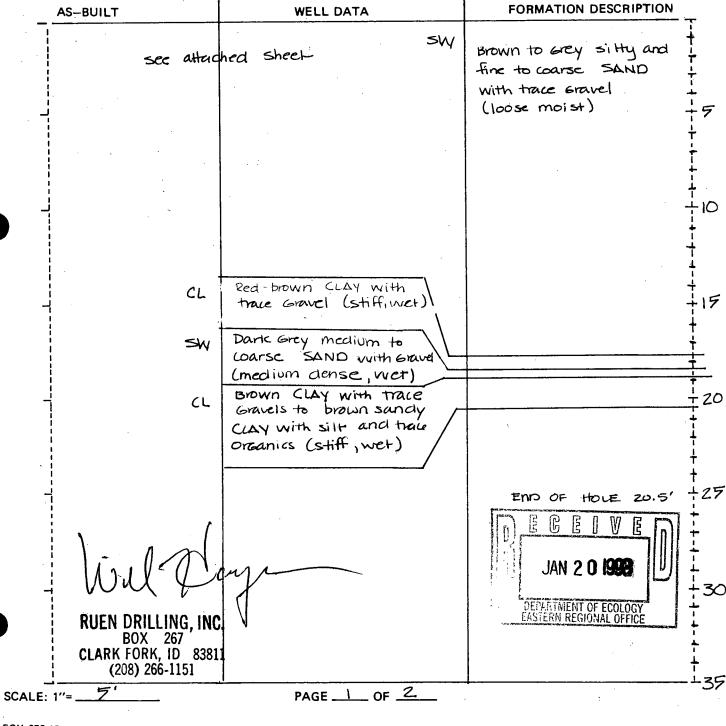
AS-BUILT	WELL DATA		FORMATION DESCRIPTION
see attached	d sheet		
		GM	DARK brown sitty to sandy GRAVEL (med dense, moist) +5
		•	+
		SW	Dark brown Gravelly medium to very coarse +10 SAND (10050, moist)
		·	tark brown silty
		Gm	Sandy GRAVEL (10050, 115, moist)
		ML	Medium brown fine sandy + SILT W/ trace charcoal and leaves (very stiff, damp); 20
			END OF HOLE 20 FT.
- 102			JAN 2 0 1993
	INC.		DEPARTMENT OF ECOLOGY EASTERN REGIONAL OFFICE
BOX 267 CLARK FORK, ID (208) 266-115	83811		
 F: 1''= ち	PAGE OF		L <u>3</u>

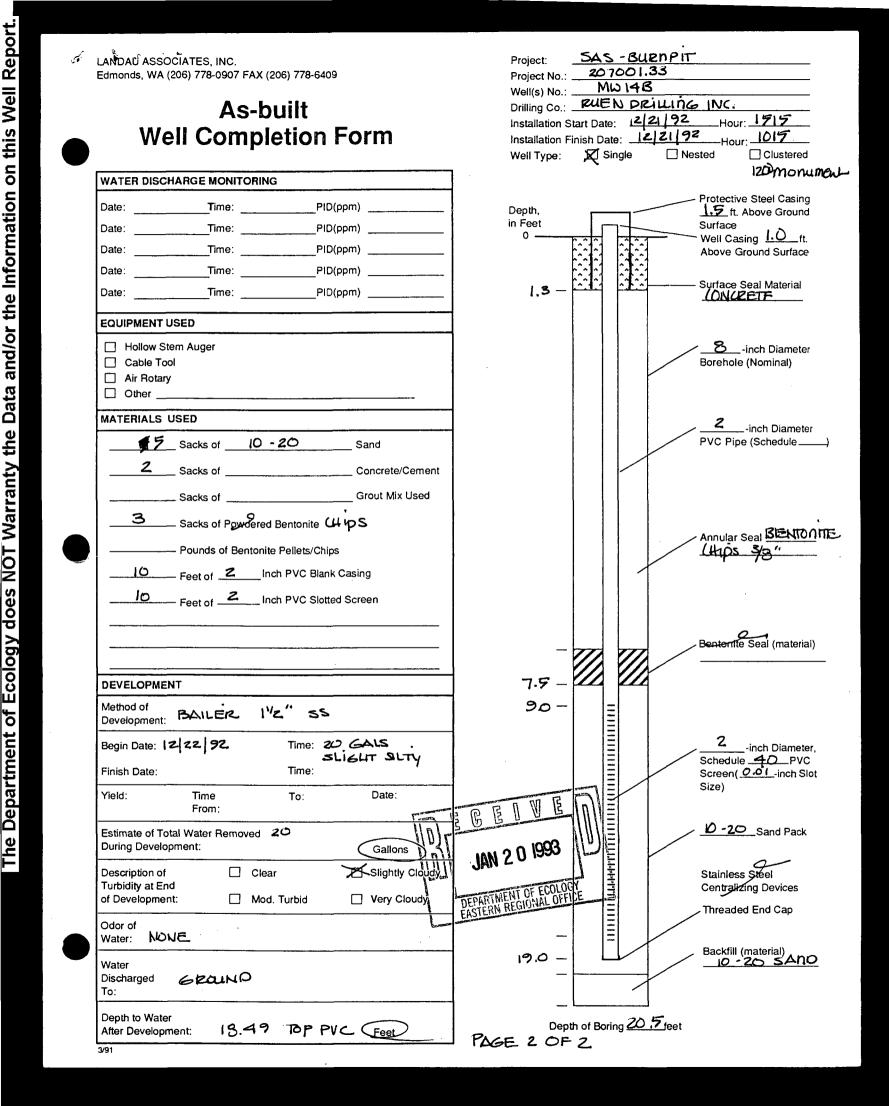

STAR CARD NO. 57709 County i I 11 NE


PROJECT NAME: SPOKANE AIRPORT BURNPIT ELL INDENTIFICATION NO. ___NAW 14A RILLING METHOD: 444 HOLLOW STEM AUGER & AIR DRILLER: WILL HAVES (2035) FIRM: PUEN DRILLING (PUENCDI 175 Om) SIGNATURE: CONSULTING FIRM: LANDAU ASSOCIATES INC REPRESENTATIVE: DEB SULVEL

gen Sa

🞓 : 🔯


LOCATIÓN: T <u>24 N</u> , R <u>42E</u> , SEC. <u>6</u> /4 <u>NE</u> /4.
DISTANCE: (W) 45 FT. FROM N/S SECTION LINE
(<u>5) 555</u> FT. FROM E/W SECTION LINE
DATUM: USGS MONUMENT 250' SOUTH OF BUNWAY
WATER LEVEL ELEVATION: N/A
INSTALLED: 12292
DEVELOPED: NOT YET



PROJECT NAME: SPOKANE AIR PORT BURNPIT
ELL INDENTIFICATION NOMW 14 B
RILLING METHOD: 44" HOLLOW STEM AUGER
DRILLER:WILL HAVES (2035)
DRILLER: VVILL HATES (2007)
FIRM: PUEN DRILLING (PUENCDI 1750M)
SIGNATURE:
CONSULTING FIRM: LANDAU ASSOCIATES INC.
REPRESENTATIVE: DEB SUINELL
REPRESENTATIVE: VLB SAFALES

START CARD NO. 57709
LOCATION: T 24N, R 42E, SEC. 6 1/4 NE 1/4 NE
DISTANCE: (N) 165 FT. FROM N/S SECTION LINE
(5) 555 FT. FROM E/W SECTION LINE
DATUM: USGS MONUMENT 250' SOUTH OF BUNWAY
WATER LEVEL ELEVATION: (18.5) 2,362.9
INSTALLED: 12 21 92
DEVELOPED: 12/22/92

ECY 050-12

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-18 Well Tag: BKP-261
					Equipment Type/ model #: Mobile G		Location NAD 83
					Auger type/diameter: 8-inch Hollow		47.619878 N, -117.517124 W
					Contractor: Geologic Drill, LLC	otem	
					Sampling method: 2-inch SPT		Sheet 1 of 1
					Hammer Weight: 140 Lbs		
					Free Fall: 30"		Above-Grade Monument
ŝ	%			2		ctric Avenue.	Time 1300
Blow Counts	Recovery %	Depth in Feet	Graphic Log	Soil Graph/ USCS	Surface conditions/ Topsoil Depth: 0		1
ow C	COV	Jept Fe	ap	C S I			Date 7/30/18
B	Re		Grap Log	Sol	Material Description		
3-7-9	60%			GM	Grey- brown silty GRAVEL with sand	d, Loose, Dry.	
10-12-15	70%	9 10 11 12		SP Rx	Grey- brown SAND, Loose, Wet. Weathered Basalt. Refusal at 13.0 fe	Becomes weathered Basalt et bgs.	
		13 14 14 15					
		16 17 18 19					
		20			Completed well depth is 12.0- feet by Well constructed with 5-feet of 20-slo Boring Completed at 13.0-feet BGS.		et bgs.

Project: SIA Land Application Study Area Project Location: Spokane International Airport Project Number: 36310160

Log of Boring MW-8

Sheet 1 of 1

Date(s) 11/29/12	Logged By JEL	Checked By GDP
Drilling Air Rotaty	Drilling Contractor H2O Well Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type Star 30k-DH	Drill Bit Size/Type 6 in. Tubex	Ground Surface 2370.7 feet bgs
Groundwater Level 2360.75 feet	Sampling Cuttings	Hammer NA. Data NA
Borehole NA	Location Northing 246693.59, Easting	2447195.34

		SA	MPLE	S					T	5.0	
Elevation, leat	Downhole Depth, feet	Type Number	Blows/ 6in.	Recovery (%)	PID/OVM (ppm)	Graphic Log	uscs	MATERIAL DESCRIPTION	Well	Completion Schematic	REMARKS AND WELL DETAILS
-2370	0-						ML	Dark grayish brown (10 YR 4/2) SILT Grading more gravel (SM) with depth (moist)			
2365	5-						-		-		
-2360	10-				2.5		SWGM	Grayish brown (10 YR 5/2) silty/sandy GRAVEL, broken gravel, some cobbles (slightly moist)	2/54		
-2355	15-						CL	Yellowish brown (10 YR 5/4) CLAY with small basalt gravel (moist).			
-2350	20-							Gray (10 YR 5/1) BASALT, broken, oxidized, calcium carbonate seams, fractured and weathered, groundwater	and the desired of the second		Groundwater belov clay in fractured/weathere basalt
2345	25-						-	Grading more competent with depth, groundwater in drill cuttings, groundwater stabilized at 10.5 ft. Boring completed to 25' bgs.			
	30-						-	URS	-		

NOU-15-1996 18:17 CASCADE DRILLING 206 485 4368 P.03.08 RESOURCE PROTECTION WELL REPORT STARI CARD NO. RO6492 PROJECT NAME: ANG - Spokane COUNTY: _____SPOKANE WELL IDENTIFICATION NO. ACD 745 MW-9 LOCATION: NILVA NWVA SOC 5 TWIN 24N A 462E DRILLING METHOD: STREET ADDRESS OF WELL: I mi West of DRILLER: RODALEY IABROSSE Electric Ave & beiger Ave Cascade Drilling, Lac FIRM: WATER LEVEL ELEVATION: SIGNATURE:__ N/A GROUND SURFACE ELEVATION: CONSULTING FIRM: ERM WEST <u>11-23</u>-96 INSTALLED: REPRESENTATIVE: MIKE ARA/020 DEVELOPED: 6558 AS-BUILT WELL DATA FORMATION DESCRIPTION WELL COVER CONCRETE SURFACE SEAL DEPTH = 1/ft3 -18. Set. grounds PVC BLANK 🗸 "x PORTING STUPPY TO 1 BACKFILL ft. TYPE: Bont chips TO 3 ft. PVC SCREEN . "x 70" SLOT SIZE: 010 GRAVEL PACK TU Stt MATERIAL: 2/17 D DEC 2 3 1996 DEPARTMENT OF ECOLOGY EASTERN REGIONAL OFFICE WELL DEPTH 11 SAND SCALE: 1" = PAGE OF. ECY 060-12 (Rov. 11/09)

Project: SIA Land Application Study Area Project Location: Spokane International Airport Project Number: 36310160

Log of Boring MW-10

Sheet 1 of 1

Date(s) 11/28/12	Logged By JEL	Checked By GDP
Drilling Method Air Rotaty	Drilling Contractor H2O Well Drilling	Total Depth of Borehole 25 feet bgs
Drill Rig Type Star 30k-DH	Drill Bit Size/Type 6 in. Tubex	Ground Surface Elevation 2359.2 feet bgs
Groundwater Level 2351.13 feet	Sampling Method Cuttings	Hammer NA Data NA
Borehole NA Backfill NA	Location Northing 247338.63, Easting	g 2450941.31

	SA	MPLE	S			-		0	
Elevation, feet Depth, feet	Type Number	Blows/ 6in.	Recovery (%)	PID/OVM (ppm)	Graphic Log	nscs		Schemati	REMARKS AND WELL DETAILS
0					-	ML - -	Brown (10 YR 5/3) SILT with few angular to subangular basalt gravel (dry to slightly moist)		
5- - - 2350 - 10-						-			
- 2345 15- -						-	Gray (10 YR 5/1) BASALT, fractured and weathered (moderately moist)		
- 2340 - 20- -							Grading (10 YR 6/1) to (10 YR 3/1) dependent on dry to wet with yellowish brown (10 YR 3/1) clay in fractures (wet)		
- 2335 - 25- -					× × × × × × × × × × × × × × × × × × ×	-	Boring completed to 25' bgs.		
2330							URS		

PROJECT: SIA Land Application Site Monitoring Well BORING N246527.94 LOCATION: E2449283.08 DRILLED BY: Fogle Pump and Supply DRILLING EQUIPMENT: Sandvik T25KW Air Roatary WELL CONST TOTAL DEPTH: DEPTH: 19' FILTER PACK INT. 7'-19' SANITARY SEAL INT. 3'-7' TYPE: 3/8" Bentonite GROUT INT. None TOP OF CASING ELEV. (FT MSL): 2367.8 TOP OF CASING	TRUCTION BOREHOLE DIA.(IN):	A Valmo Co	CASING M AND DIA. (I SURFACE WELL SC	FROM SEAL I REEN II EVEL/D	DGGED Y: BJK TART ATE: 8/2 MPLING DUIPMENT: 1 TOP OF L 2" Sch	CASING	ED DRW F s S) PVC S SLOT SIZI	MONITORING WELL NUMBER: PAGE: 1 OF 1 MW-111 PERMIT NO. BIO-784 COMPLETION DATE: 8/23/2014 ASING TICK-UP +/-: +2.79' TYPE: Concrete E (IN): 0.020 H20 @ 9.3' BGS - 8/21/14 @ 0830
GROUP SYMBOL (FT. B.G.S.)	LOGY	EPTH T. B.G.S.)			SAM RECOVERY	MPLE TYPE	NUMBER	REMARKS (DRILLING CONDITIONS, PID READINGS, ETC.)
ML 5' SANDY SILT: Brown (2.5Y 3/3), dry, no gravels. 10' SAND AND GRAVEL: Brown (2.5Y 4 poorly graded sand with gravel. SP 10' SILTY SAND: Brown (10Y 2/2), with (10YR 8/8), damp/wet, silty sand with DiFFER AT OTHER LOCATIONS AND MAY CHANGE AT THE DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THE DIFFER AT OTHER LOCATION SAND MAY CHANGE AT THE LOCATION OF ACTUAL CONDITIONS ENCOUND	, sand-silt mix, 4/2), damp, i yellow pocket: h gravels. alt.	0 - <td></td> <td></td> <td></td> <td>CE CONDI MATION F</td> <td>TIONS MAY RESENTED</td> <td>Ground surface Start at 0740 Final water level = 9.3' BGS. Encountered water at 13' BGS. Driller feel different layer at 15' BGS. Basalt at 17' BGS. Terminate drilling at 20' End at 0746 When 6" casing was removed borehole collapsed a little. 2" schedule 40 pvc casing set to depth of 19' BGS.</td>				CE CONDI MATION F	TIONS MAY RESENTED	Ground surface Start at 0740 Final water level = 9.3' BGS. Encountered water at 13' BGS. Driller feel different layer at 15' BGS. Basalt at 17' BGS. Terminate drilling at 20' End at 0746 When 6" casing was removed borehole collapsed a little. 2" schedule 40 pvc casing set to depth of 19' BGS.

Surveyed data, except for T.O.C. and ground surface elevation, is accurate to +/- 0.5 feet. S:\[Working Drafting]\2014230009 Spokane Airport\DWGs\2014230009 MW-11 LOG.dwg 11/6/2014 RKB

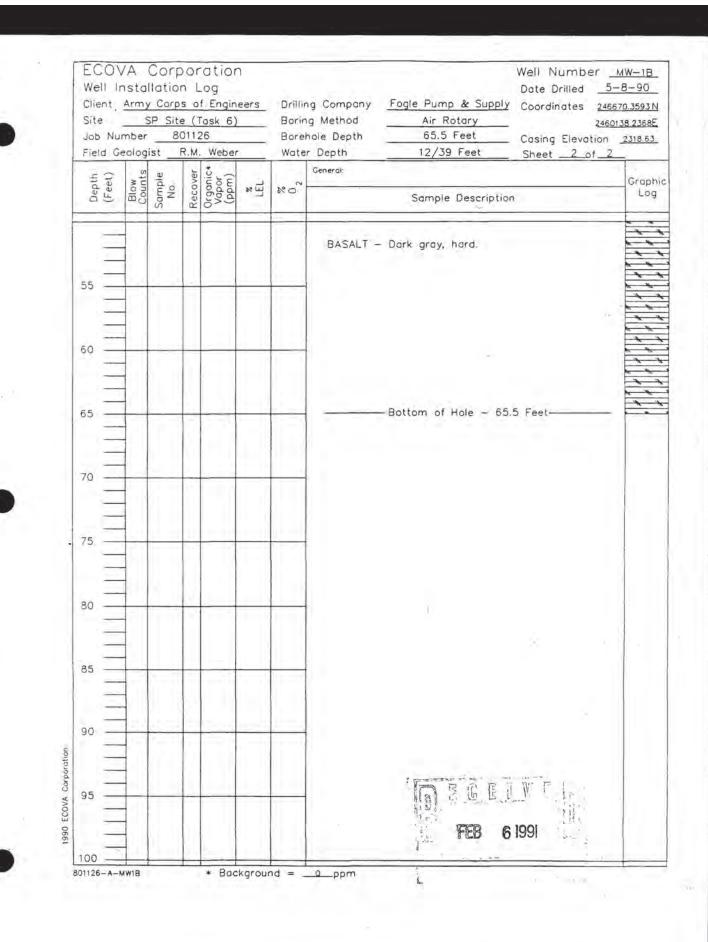
DATE INSTALLED 8/21/2014	BORING/WELL NO. MW-11 TOP OF CASING ELEV. AT MARK 2370.59 GROUND SURFACE ELEV. 2367.8 DATUM NAVD88
WELL SCHEMATIC DRAWING NOT TO SCALE expandable well cap drain hole drain hole int installed int int int int int int int int int int	NOTE: Depths and intervals are measured from ground surface. BORING INFORMATION A. Total Depth 19 B. Borehole Diameter 6 Drilling method Sandvik T25KW Air Rotary Ce WELL CONSTRUCTION C. Total Casing length 21.79 Material Schedule 40 PVC
centralizer (optional) C G	D. Well Casing Diameter (I.D.) 2 in. E. Well Screen Screen length 10 ft. Screen interval from 9 ft. to 19 ft. Slot size 0.020 in.
	F. Surface Seal from 0 ft. to 3 ft. Seal materials Concrete Concrete Grout from - ft. <
	I. Filter Pack from <u>7</u> ft. to <u>19</u> ft. Pack material <u>10/20 CSSI sand</u> J. Well Casing height (above grade) <u>2.79</u> ft.
drain hole	K. Well Sump length0ft.Well tail piece length3in.Centralizers located at9ft.

BORING		177.19	Site Monitoring We	II Installation	CASC	ES ADE EAR		PROJECT NUMBER: LOGGED BY: BJK	2014230 CHECK BY:	ED	MONITORING WELL NUMBER: PAGE: 1 OF 1 MW-12 PERMIT NO. BIO-785
DRILLED BY:	Fogle F	oump and Sup	ply		SC A Valm	IENCES ont Industrie		STADT	/21/2014	DIW	COMPLETION DATE: 8/23/2014
DRILLING EQUIPME	B ENT: Sar	ndvik T25KW /	Air Roatary					SAMPLING EQUIPMENT:	Cutting	s	
			WELL CONS						CASING		
TOTAL DEPTH:	26'		^{H:} 26'	BOREHOLE DIA.(IN):	6"	CASING I AND DIA.			hedule 4		ASING TICK-UP +/-: +2.65'
SANITARY	PACK INT. SEAL INT ROUT INT.	3'-5'	SIZE: 10/20 CSSI TYPE: 3/8" Bentoni TYPE: None	te chips		WELL S	CREEI	L INT: 0-3' N INT: 6'-26 /DATE (MEAS		SLOT SIZ	FYPE: Concrete E (IN): 0.020 h2o @ 11.15' BGS - 8/21/14 @ 1120 h2o @ 10.7' BGS - 8/21/14 @ 1200
GROUND ELEV. (F1	SURFACE MSL):	2349.8	TOP OF CASING ELEV. (FT MSL):	2352.45		COMMEN	Т:				
GROUP SYMBOL	INTERVA (FT. B.G.S	L	SCRIPTION OF LITHC	C)EPTH T. B.G.S.)	WELL GRAPHIC			AMPLE Y TYPE	NUMBER	REMARKS (DRILLING CONDITIONS, PID READINGS, ETC.)
											Ground surface Start at 0740
GW	5'	SANDY GRAN and gravels w	<mark>VEL:</mark> Brown, dry, well ith fine silt.	graded sands							
	10'	SANDY GRAV and gravels w	<mark>∕EL:</mark> Brown, dry, well ith fine silt.	graded sands		SAND	_				Final water level = 10.7' BGS
	13'-17'	BOULDER				10/20 CSSI					Basalt at 13' BGS. Pause drilling at 0917 to cut 6" casing so driller can advance head. Drilling resumed at 0933.
	. 17'		Brown (2.5Y 3/3), wii (Gley1 4/10GY) lense silt.								
ML	20'	SANDY SILT:	Brown, wet, sandy si	lt with gravels.			_				Encountered water at 20' BGS.
Basalt	23'	BASALT: wet	, fractured basalt.								Basalt at 23' BGS.
			Depth = 26'								Terminate drilling at 26'
THIS SUMI DIFFER AT IS A SIMPL	MARY APP OTHER L	PLIES ONLY AT OCATIONS AND OF ACTUAL C	THE LOCATION OF TH MAY CHANGE AT TH ONDITIONS ENCOUN	HIS BORING A HIS LOCATION TERED	ND AT THE WITH THE	TIME OF DR PASSAGE O	ELING F TIME	3. SUBSURF/ E. THE INFO	ACE COND RMATION F	ITIONS MAY PRESENTED)

Surveyed data, except for T.O.C. and ground surface elevation, is accurate to +/- 0.5 feet. S:\[Working Drafting]\2014230009 Spokane Airport\DWGs\2014230009 MW-12 LOG.dwg 11/6/2014 RKB

DATE INSTALLED 8/21/2014	BORING/WELL NO. <u>MW-12</u> TOP OF CASING ELEV. AT MARK <u>2352.45</u> GROUND SURFACE ELEV. <u>2349.8</u> DATUM <u>NAVD88</u>
NOTES:	NOTE: Depths and intervals are measured from ground surface. BORING INFORMATION A. Total Depth 26 ft. B. Borehole Diameter 6 in. Drilling method Sandvik T25KW Air Rotary VE WELL CONSTRUCTION C. Total Casing length 28.65 ft. Material Schedule 40 PVC D. Well Casing Diameter (I.D.) 2 in. E. Well Screen 20 ft. Screen length 20 ft. Screen interval from 6 ft. to 26 Stot size 0.020 in. F. Surface Seal from 0 ft. to 3 Seal materials Concrete G. Grout from - ft. H. Bentonite Sanitary Seal from 3 ft. to 5 ft. Seal materials 3/8" Bentonite Chips 1. I. Filter Pack from 5 ft. to 26 ft. Pack material 10/20 CSSI sand J. Well Casing height (above grade) 2.65 ft. K. Well Sump length 0 ft. 0 ft.
$\begin{array}{c c} & & & \\ \hline \\$	Well tail piece length3in.Centralizers located at11 and 21ft.

S:\[Working Drafting]\2014230009 Spokane Airport\DWGs\2014230009 MW-12 LOG.dwg 11/5/2014 RKB


ECOVA Corporation Well Number MW-1A Well Installation Log 5-10-90 Date Drilled Fogle Pump & Supply Coordinates 246670.5625 N Client Army Corps of Engineers Drilling Company Site SP Site (Task 6) Boring Method Air Rotary 2460128.4101E Job Number 801126 Borehole Depth 83 Feet Casing Elevation 2319.00 Field Geologist R.M. Weber Water Depth 13 Feet Sheet _1 of _2 Organic• Vapor (ppm) Blow Counts General: 50 feet 6" steel casing, pressure grout. Sample No. Recover Depth (Feet) Graphic 0% * 1 Log Sample Description SILTY SAND (SM) - Fine- to coarse-grained sond, brown, with black basalt cuttings, damp. 5 BASALT - Fresh, light gray, dry. 10 Basalt - Fresh, dark gray, dry. Hard drilling. Static water level at 13 Feet. BASALT - Alternating light and dark gray, dry. 15 20 Dry, hard drilling 25 BASALT - Gray, with white and orange fragments, 30 easier drilling, damp. WEATHERED BASALT - Same as above with minor 35 clay, sand, and gravel. 40 Water yielding zone at 40 feet. 1990 ECOVA Corporation BASALT - Fractured, weathered, orange and white fragments, some clays, sand and gravel. 45 BASALT - Dark gray. P. 71 199 50 * Background = ____ppm 801126-A-MWIA

Client <u>Army Corps of Engineers</u> Site <u>SP Site (Task 6)</u> Job Number <u>801126</u> Field Geologist <u>R.M. Weber</u>						Drilling Company Boring Method Borehole Depth Water Depth		Fogle Pump & Supply Air Rotary 83 Feet 13 Feet	2460128.410 Casing Elevation 2319.0	
			T					6" steel casing, pressure grout.	Sheet _2_of_2_	125
Depth (Feet)	Blow	Sample No.	Recover	Organic+ Vapor (ppm)	LEL S	80%		Sample Description		Gro
55 -							BASALT - cosing.	- Black, no water, good	seal on conductor	
50	-						BASALT -	- Black, with dark gray	clay, domp.	
60 -							damp.	CLAY WITH GRAVEL (GM	/GC) — Black,	0000000
65 —	-		-				Coldr cita	nge to dark brown.		000
70 -								nge to brown with incre ge fragments, predomina		000000
/u										0000
75	_						white class	ED BASALT — Black—graj sts, soft drilling, damp. ding zone at 75 feet.	y, with orange and	
1							WEATHERE orange or	ED BASALT — Block-gra nd white fragments, soft	y, with abundant drilling.	
80 —				1			BASALT -	- Dark gray, hard.		
								- Bottom of Hole - 83	Feet	-
85 —	-	-								
13										
90 —	-									
13										
95 -								In Fish	- 1	
100 -	_							FEB 6	1991	

WELL COMP	PLETIONMW-1A
	C L DRILLING TIMES: START <u>OBOD - 5/10/90</u> FINISH <u>1100 - 5/</u> 11/90 STANDBY or DOWN TIME:
	G
	METHOD OF DECON. PRIOR TO DRILLING:
в.	
	A DEVELOPMENT
	METHOD OF DEVELOPMENT: DISPLACEMENT PUMPING @ 70 CYCLES/SEC
	PUMP TIME 0305 TO 0500 DATE 5/17/9
	TURBIDITY <u>X</u> CLEAR MOD. TURBID AFTER DEVELOPMENT: SL. TURBID TURBID
TOP OF CASING ELEVA	Contraction of the second se
BORING DIAMETER . B WELL DEPTH C WELL STICKUP	79.3 FT. WATER CROUND SURFACE STORAGE TANK
D BLANK INTERVAL _ BLANK DIAMETER _	
E SCREEN INTERVAL . SCREEN DIAMETER.	NULL TEOLING HIGHE
TYPE/SLOT SIZE F SEDIMENT TRAP G ANNULAR SEAL	0.01
	GALLONS OF GROUT USED GROUT COMPOSITION #6 BENTONITE
MATERIAL:G	BUCKETS OF BENTONITE DELLETS
MATERIAL:G H. BENTONITE SEAL I SANDPACK1 TYPE/SIZE: J BOTOM SEAL/PACK	BUCKETS of BENTONITE PELLETS 20/40 YARDS CEMENT - SAND USED 20/40 3 CENTRALIZERS at 31, 59, AND 78.5' BGS
MATERIAL:G H. BENTONITE SEAL I SANDPACK1 TYPE/SIZE: J BOTOM SEAL/PACK	IB FT. BUCKETS of BENTONITE PELLETS 20/40 YARDS CEMENT - SAND USED YARDS CEMENT - SAND USED 3 CENTRALIZERS at
MATERIAL:G H. BENTONITE SEAL I SANDPACK1 TYPE/SIZE: J BOTOM SEAL/PACK	18 FT. BUCKETS of BENTONITE PELLETS 20/40 YARDS CEMENT - SAND USED 20/40 CENTRALIZERS at 31, 59, AND 78.5' SAND FT. FT. WELL COVER USED: X Above Grade Other
MATERIAL:G H. BENTONITE SEAL I SANDPACK1 TYPE/SIZE: J BOTOM SEAL/PACK MATERIAL:S K WELL COVER	18 FT. BUCKETS of BENTONITE PELLETS 20/40 YARDS CEMENT - SAND USED 20/40 CENTRALIZERS at 31, 59, AND 78.5' SAND GENTRALIZERS at 31, 59, AND 78.5' FT. WELL COVER USED: FT. Above Grade FT. Other CENTRALIZERS of Cover Co

Client: Army Corps of Engineers SiteSP Site (Task 6) Job Number801126 Field GeologistR.M. Weber						Borir Bore	ng Company Fogle Pump & Supply Coordinates 24667 ng Method <u>Air Rotary</u> 246013 hole Depth <u>65.5 Feet</u> Casing Elevation r Depth <u>5 Feet</u> Sheet <u>1 of 2</u>
Depth (Feet)	Blow Counts	Somple No.	Recover	Organic* Vapor (ppm)	% LEL	0°2	General: 6" steel casing to 5 feet. Sample Description
5							SILTY SAND (SM) - Fine- to coarse-grained sand, brown, block basalt gravel. ↓ Static water level at 5 feet. BASALT - Fresh, gray, dry. BASALT - Fresh, dark gray - water at 12 feet. Water yielding zone at 12 feet. BASALT - Light gray, cuttings are fine and powdery, very hard, dry.
30							BASALT – Dark gray, softer drilling, damp. J Water yielding zone at 30 feet.
40							WEATHERED BASALT - Dark gray, orange, and white fragments, minor clay and sand, soft.

÷

		W-1B
		DRILLING TIMES: START 1245_5/8/90 FINISH 1504_5/8/90 STANDBY OF DOWN TIME:
		METHOD OF DECON. PRIOR TO DRILLING:
	H H	DEVELOPMENT METHOD OF DEVELOPMENT: DISPLACEMENT PUMPING 60 CYCLES/SEC
		START TIME 0820 TO 0120 DATE 5/17/90
•	TOP OF CASING ELEVATION <u>2318.63</u> FT A BORING DEPTH <u>65.5</u> FT. BORING DIAMETER <u>6</u> IN. B WELL DEPTH <u>50.0</u> FT.	ODOR IN WATER ? NONE WATER GROUND SURFACE STORAGE TANK
	C WELL STICKUP <u>0.5</u> FT. D BLANK INTERVAL <u>65</u> FT.	DISCHARGED STORM SEWERS TANK TRUCK TO: DRUMS
	BLANK DIAMETER 2.5-32.5 E SCREEN INTERVAL 35-45 FT.	DEPTH OF WATER AFTER DEVELOPMENT: 6 FEET
	SCREEN DIAMETER <u>2</u> IN. TYPE/SLOT SIZE <u>0.01</u> F SEDIMENT TRAP <u>5</u> FT. G ANNULAR SEAL <u>FT.</u> MATERIAL: <u>GROUT</u> H. BENTONITE SEAL <u>FT.</u> I SANDPACK <u>FT.</u>	9.5 SACKS of 20/40 SAND 4.5 SACKS of PORTLAND CEMENT SAND SACKS of PREMIX CONCRETE GALLONS of GROUT USED GROUT COMPOSITION #6 BENTONITE SACKS of BENTONITE PELLETS BUCKETS of BENTONITE PELLETS
Corporation	TYPE/SIZE:20/40_ J BOTOM SEAL/PACK _2 FT. MATERIAL:SAND K WELL COVER FT. L STICKUP FT.	WELL COVER USED:
	M CONDUCTOR CASING FT.	Lockable
COVA		
1990 ECOVA	NOT TO SCALE	- 11 0 1

SUBMIT ONE WELL REPORT PER WE Construction/Decommission (select one) Construction Decommission ORIGINAL INSTALLATIO		5 Type of Well (select one) Image: Construction Image: Construction Image: Constretion Image: Construction
		perty Owner Spokane International Airport
consulting Firm Budinger and Associates, In		Address
Inique Ecology Well ID		Airway Heights County Spokane
ag No. <u>ALR 119 (MW-1)</u>		ation NE $1/4_{-1}/4_{-1}$ SW $1/4_{-1}$ Sec 28 Two 25 R 42
VELL CONSTRUCTION CERTIFICATION ccept responsibility for construction of this well, and its /ashington well construction standards. Materials used pove are true to my best knowledge and belief.	: I constructed and/or compliance with all ind the information reported Lat/ still	Long (s, t, r Lat Deg <u>47</u> Lat Min/Sec <u>38' 5.0</u> REQUIRED) Long Deg <u>117</u> Long Min/Sec <u>30' 2</u>
Driller Engineer Trainee Name (Print)		Parcel No
Driller/Engineer /Trainee Signature	Case	ed or Uncased Diameter <u>8</u> " Static Level <u>12.2</u> '
	Wor	k/Decommission Start Date 11/8/07
f trainee, licensed driller's	Wor	k/Decommission Completed Date 11/26/07
Construction/Design	Well Da	ta Formation Description
	Monument: 6" dia., 6' long to 3' below grade with lock	
1	Riser: 2" schedule 40 pvc so locking expansion plug	et to 8.5' with Sand with Silt
1		
1	Screen: 2" schedule 40 pvc from 8.5' to 14.5' with end of	
<u> </u>	Seal: Bentonite from 3' to 6	.5'
A8:47 D667	Filter pack: #20-40 silica sa 14.5'	nd from 6.5' to
		RECEIVED
IAN CALL		JAN 0 9 2008
		DEPARTMENT OF ECOLOGY EASTERN HEGRUNAL OFFICE
	RECEI	
	JAN 03	2007
	DEPARTMENIU	
	WELL DRILLI	NG UNIT
		Basalt
-		End of Boring @ 15'
	and the second second	Line of Boring of 15
	and a state of the state of	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	· · · ·	

.

PAGE $\underline{1}$ OF $\underline{1}$

SUBMIT ONE WELL REPORT PER WE	284358	Type of Well (select one) ✓ Resource Protection Geotech Soil Boring
Decommission ORIGINAL INSTALLATION		
Consulting Firm Budinger and Associates, Inc.		Owner Spokane International Airport
Inique Ecology Well ID	011011001	
Sag No. ALR 120 (MW-2)	City <u>Airw</u>	ay Heights County Spokane Select One X EWM
VELL CONSTRUCTION CERTIFICATION: ccept responsibility for construction of this well, and its cc /ashington well construction standards. Materials used ar bove are true to my best knowledge and belief.	d the information reported still REQU	$\frac{\text{NE} 1/4 - 1/4 \text{ SW} 1/4 \text{ Sec } 28 \text{ Twn } 25 \text{ R} 42}{\text{Select One } 28 \text{ WM}}$ $\frac{\text{(s, t, r Lat Deg } 47 \text{ Lat Min/Sec } 38' 8.3''}{\text{JIRED}}$ $\frac{\text{Long Deg } 117 \text{ Long Min/Sec } 30' 28.5'}{\text{I No.}}$
Driller/Engineer /Trainee SignatureX		Uncased Diameter <u>8</u> " Static Level <u>12.5</u> '
Driller or Trainee License No. 2853		commission Start Date 11/8/07
f trainee, licensed driller's		
ignature and License No. 2853	Work/Dec	commission Completed Date 11/26/07
Construction/Design	Well Data	Formation Description
Ι.	Monument: 6" dia., 6' long steel se	et in concrete Road Fill: Gravel and Sand with Cobbles
1	to 3' below grade with locking lid	and bollards
1	Riser: 2" schedule 40 pvc set to 9.	5' with
I	locking expansion plug	Sand with Silt The h
1	Screen: 2" schedule 40 pvc (0.010	
ł	from 9.5' to 14.7' with end cap	"slot) set BUD OL AB
	Seal: Bentonite from 3' to 7'	0°C 18
	Filter nach #20.40 silies sond from	
1	Filter pack: #20-40 silica sand from	n / 10 15
		RECEIVED
I		REGENCED
		JAN 0 9 2008
<u> </u>		JAN () 9 2000
	RECEIVED	- OF FOOLDET
		DEPARTMENT OF THE BASTERN REGIONAL OFFICE
1	JAN 0 3 2007	
	DEPARTMENT OF ECULO	GY
	WELL DRILLING UNIT	
		Basalt
		End of Boring @ 15'
	1	
·		

.

`

SUBMIT ONE WELL REPORT PER WELL Construction/Decommission (select one) Construction Decommission ORIGINAL INSTALLATION N	lotice	,	 pe of Well (select one) Resource Protection Geotech Soil Boring 				
of Intent Number			ane International Airport				
Consulting Firm Budinger and Associates, Inc.							
Jnique Ecology Well ID Tag No. <u>ALR 121 (MW-3)</u>			County Spokane	VIEW			
VELL CONSTRUCTION CERTIFICATION: 1 of comparison of this well, and its complexity for construction of this well, and its complexity ashington well construction standards. Materials used and t bove are true to my best knowledge and belief.	pliance with all he information reported	LocationSE $1/4 - 1/4$ NW $1/4$ Sec28Twn25R42Select OneXLat/Long (s, t, rLat Deg47Lat Min/Sec38' 1still REQUIRED)Long Deg117Long Min/Sec30'					
Driller Engineer Trainee Name (Print) Driller/Engineer /Trainee Signature				<u></u>			
Driller or Trainee License No. 2853		Cased or Uncased Dia	meter <u>8</u> " Static Level <u>7.5</u> '				
f trainee, licensed driller's		Work/Decommission S	Start Date 11/8/07	<u>.</u>			
Signature and License No. 2853		Work/Decommission C	Completed Date 11/26/07				
		,					
Construction/Design	, V	Vell Data	Formation Description				
1		6' long steel set in concrete ith locking lid and bollards	Silt with Sand				
	Riser: 2" schedule 4 locking expansion p	0 pvc set to 6.5' with blug					
I		40 pvc (0.010" slot) set	Sand with Silt O				
1	from 6.5' to 8.4' wit		SOL UAN				
1	Seal: Bentonite fror	n 3' to 4.5'					
 	Eilten an ein #20.40	-11:	EEC 2	5' -			
	Filter pack: #20-40	silica sand from 4.5' to 8.5'					
			8 :48				
			00				
			Basalt				
			End of Boring @ 8.5'	<u> </u>			
 	RECE	IVED	1	10' —			
1	JAN O						
l	DEPARTMENT WELL DRI	LLING UNIT					
		Ľ	JAN 0 9 2008				
			DEPARTMENT OF COOLOGY EASTERN REGIONAL OFFICE	15' —			
			1				
			l •				
			1				
			1				

.

(SUBMIT ONE WELL REPORT PER WELL Construction/Decommission (select one) ✓ Construction Decommission ORIGINAL INSTALLATION N of Intent Number Consulting Firm Budinger and Associates, Inc. Unique Ecology Well ID Tag No. ALR 122 (MW-4) WELL CONSTRUCTION CERTIFICATION: 14	lotice	Property Owner <u>Spoka</u> Site Address City <u>Airway Heights</u>	pe of Well (select one) ✓ Resource Protection Geotech Soil Boring ane International Airport County Spokane W 1/4 Sec 28 Twn 25 R 42 Select One Www
accept responsibility for construction of this well, and its com Washington well construction standards. Materials used and t above are true to my best knowledge and belief. Driller Engineer Trainee Name (Print) Driller/Engineer /Trainee Signature Driller or Trainee License No. 2853	he information reported	Tax Parcel No. Cased or Uncased Dia Work/Decommission S Work/Decommission C	Completed Date 11/26/07
Construction/Design	Monument: 6" dia., to 3' below grade w Riser: 2" schedule 4 locking expansion p Screen: 2" schedule from 7.5' to 12.4' w Seal: Bentonite from	40 pvc (0.010" slot) set ith end cap	Formation Description Silt with Sand Sand with Silt Sand With Sand Sand With Silt Sand With Sand Sand Wi
	RECEIV JAN 0320 DEPATING OF CO MICL CONTROL	07	Basalt End of Boring @ 12.5' 15' - RECEIVED JAN 0 9 2008 DEPARTMENT OF ECOLOGY EASTERN REGIONAL OFFICE

ECY 050-12 (Rev. 2/03)

·~~~

Proie	ct: SIA	Storm	wa	ter					BORING NO.	MW-5	
Proje	ct Loc	ation: N	lort	h en	d of	Run	way 21		Dertine ite.		
Proje	ct Nur	nber: 3	631	0018	3				Sheet 1 of 1		
	ation:							Date(s) Drilled	27-May-09	Logged By	J. Sugaiski
	° 38'							Drill Bit Size/ Type	Air Rotary	Total Borehole Depth	20
W 1	17° 3	0' 6.6'						Drilling Contractor	Budinger	Drill Rig Type	Mobile 857
								Sampling Method(s)	SPT	Hammer Data	120 # Auto
								Level/ Date Measured	5R	Surface Elevation	Approx 2292
88		SAMPLE			pol.						REMARKS AND
Elevation (ft) Depth (ft)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								ERIAL DESCRIPTION		OTHER TESTS
0						OL	Top Soil				
1	<u> </u>		-	-	-	SM	Light Brown	SILT with som	e SAND		4
	├ ─		⊢		+						1
2						SW	Light brown r	medium to fine	grain SAND with SILT. N	loist]
-	<u> </u>		-	-	-						4
	├ ─		⊢		+						1
4											1
- 5			4								Water @ E B
			4		-						Water @ 5 ft
6			6			SP	Olive gray m	edium grain d	ean SAND, obtained sam	ple]
_,			8								1
· ·	⊢		┝	-	-						{
8											1
_						00	0.000]
1	├──		\vdash	-	\vdash	GP	Coarse GRA	VEL or begin t	Dedrock		-
10			50	+			No recovery				3" sampler could
-11											not penetrate
	<u> </u>		-	-	-						4
12											1
13									A 1987]
13	<u> </u>		-	-	-	BR	Basalt rock s	trong, difficult	aniiing		4
14											1
15]
15			50	+	-		No recovery				4
16			-	-	-						1
								-			1
17	<u> </u>		-	-	-		Highly fractur	red weathered	bedrock		4
18			-	-	-		Well screene	d from 5 to 20	ft. Sand from 4 to 20ft. Be	entonite from	1
_							3 to 4ft				End boring at 20'
19											Well Installed
		I	L	I	L						URS

P136310018 SIA Stormwater 09/Working/Additional Well Installation/MW-5 Installation.xis(Soil Boring Log) 7/23/2009

Project SIA Stormwater Project Location: North end of Runway 21									BORING	G NO.	MW-6		
rojecti						Con 1 au	41 11		Sheet 1	of 1			
ocatio	on:							Date(x) Detied	27-M	10-year	Logged De	J Sugeried	
47*	11							Dell Brissal Type	Art	totary	Total Borehole Depth	201	
1117	• 30	13.5	5*					Drilling Contractor	Bud	nger	ions (og Type	Mobile (157	
								Sampling Method(a)	5	64	Hartmar Deta	120 # Auto	
								Date Measured	i ii		Surface Coverage	Approx 2288	
Se swein E.							1		ERIAL DESCR		- Income -	REMARKS AND OTHER TESTS	
2	-	ш. Т	ł	No.	ā	P OL		-			_	OTHER (2515	
							Top Soll Brown SIL	T with some sa	60			1.1	
1		_		1	-							1	
4								_					
E													
-	-	-	-		-		-		_	_		4	
4							1						
-			X			SC		n clayey silty ar				S-	
1		-	X		-		Sampled fi	om 4.5 to 6.5t		_			
4			x										
-	_ 1						6.36		and.			1	
1	-				-	SP	Olive Gray	medium clean	SAND				
1				0-1			-						
1		-						6.51.5					
9		-	1		-		Obtained s	ampe				Water @ 9.5 tt	
16		-	4				1 ····						
-							-						
	-		-				-						
14	- 1						2					1	
12	-	_		-			-					4	
F							-			_			
14	1.1		1.1	1.1			-					1	
-1	-	-		15	-		0					-	
			4										
74		-	11		1		Obtained s	ampie					
17		-	-14	-		Guis	Marilium Co.	e SAND and G	PAVE			1	
E			-		-		and a second of					1	
12					1 1								
-16		-	-			BR		Bed Rock end			incuit drilling Ienton ite from 3 t	End boring at 20'	
		-	1.4	1			41				cinoria non 21	Provi manancu	
1												URS	

enter (ISWKohing)Adottome (Veel Instalactor)MV-8 installation taa(Sol Boring Log) 1/128/310018 SIA Storm 1/229/2009

Project: SIA Stormwater Project Location: North end of Runway 21								BORI	NG NO,	MW-7		
		ation: N				unwa	/21	Sheet 1	of 1			
.003	tion:						Oute(x) Drillet		27- May-00	Logged	J. Sugarot	
N 47* 38'7 9" Delite Das									At Rotery	Timel Sorwhole Depth	28	
N 11	7* 3	0' 59.1	7*				Type Dylling Dontractor	1 1	Bultow	Drill Fog Type	Mobile 857	
							Sampling Method(x)		SPT	Higher	120 8 640	
							Date Measur		1358	Durbos Devetori	140 6 840	
(0)1010	-	SAME			1					- and the second	REMARKS AND	
0.00	2		1	10	and the local	8	MA	TERIAL DE	SCRIPTION		OTHER TESTS	
-		-	-	-		SW.	ight Brown SAND with I	trace SILT a	nd some GRAV	/EL, dry	-	
-											1	
-											-	
			1					_			Difficult to drift	
4	1.5				1	BC.	aray highly fractured bas	all hadnes	100			
-			50+		1		nay nging nacia ce sa			-	Constant.	
			11								No Recovery	
	1		1.2		1		-					
-	-		1		1						1	
	-	-	-		-						Drilling bases	
-		-	50+								No Recovery	
-			14	-						-		
-											1	
2									_			
12			54			BR	sity Black weathered be	edrock with s	ome sand			
-14	-						-				Water @ 13.5 th	
-	11.1	1.1	1		-						There is the set	
-10												
			50+		1		-				No Recovery	
-				-							1	
-			0	\odot	-						1	
13					1		-				End boring at 19	
18			1.1		1		Veil screened from 5 to A	19tt. Said t	rom 4 to 20 ft. E	Senton its from 3 t	Weil Installed	
			-	-		1					URS	

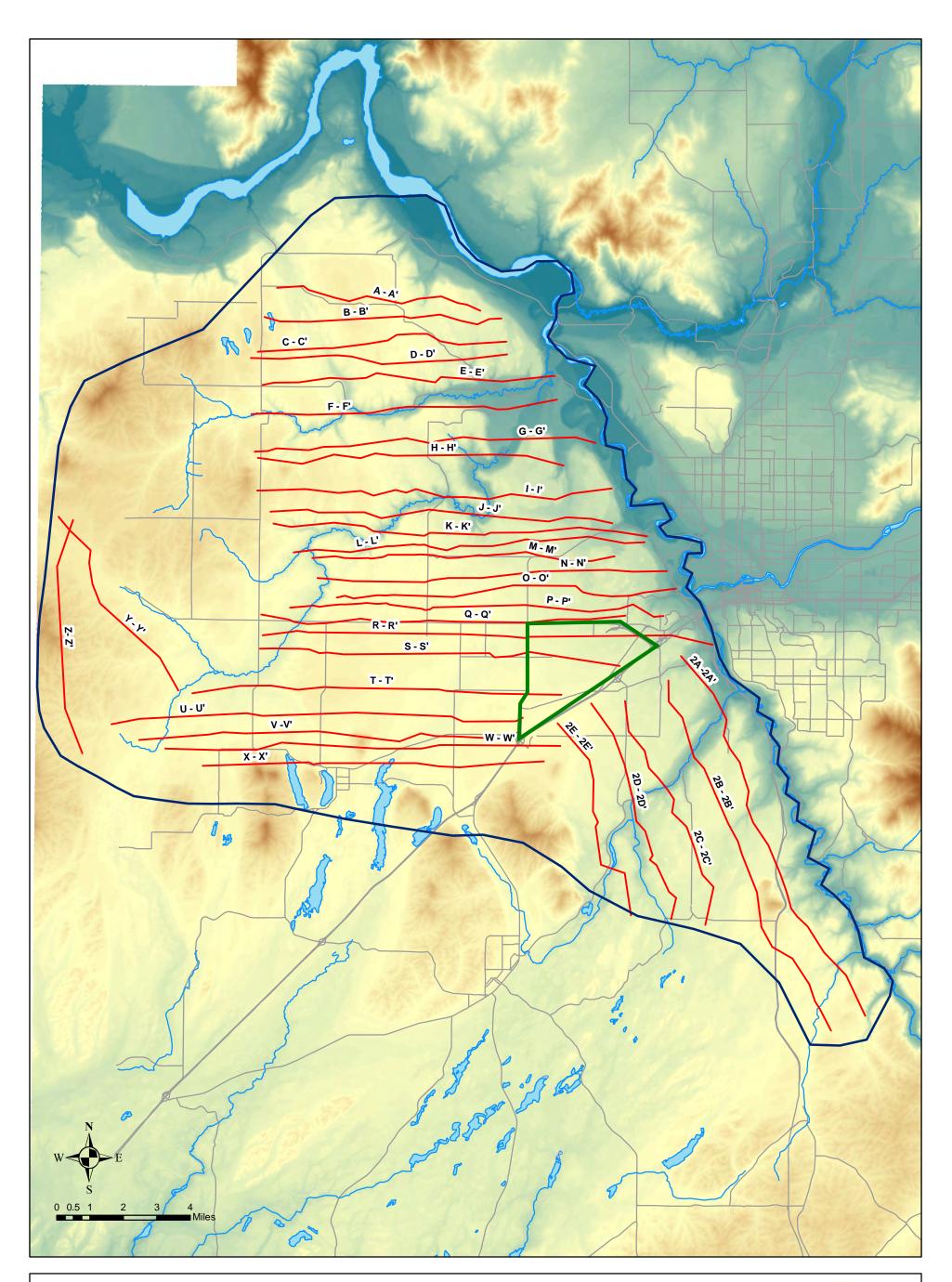
A=	CON	1					
	NEW	WELL			AECOM Project Number: 60557313	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-13 Well Tag: BKP-258
		11-2-17			Equipment Type/ model #: Mob	ile G-2400	Location NAD 83
	10-11						47.6355 N, - 117.4977 W
Patra martin	10-13	- 51			Auger type/diameter: 8-inch Hol	low Stem	117.4977 W
	an saidh an				Contractor: Geologic Drill, LLC		
		STARLE P			Sampling method: 2-inch SPT		Sheet 1 of 1
	1200	Mr. Jak	1154		Hammer Weight: 140 Lbs		Above-Grade
	~	Sector We		SACE AV	Free Fall: 30"		Monument Time 830
Blow Counts	Recovery %	Depth in Feet	ic.	Soil Graph/ USCS	Location of Boring: Approx. 185 Surface conditions/ Topsoil Dep		
ĕ Co	ove	epth Fee	Graphic	္က မီလို	Surface conditions/ ropson be	In Grass-covered misue.	Date 11/2/17
Blo	Rec	ă	Grap	Soil Soil	Material Description		
2-2-6	100%	0		SM	Brown silty SAND with occasior	nal gravel. Loose, Moist. With organics.	
		3					
5-6-6	100%	5		SM	Brown silty SAND, Medium-den	se, Moist.	
		6					
				GM	Brown, silty GRAVEL with sand	, Medium-dense, Wet.	
		7	-				
		8					
		9		SP	Grey- brown SAND with trace si	lt, Medium-dense, Wet.	
		10					
10-13-37	76%	10					
		11					
				RX	Basalt. Refusal at 11.	5 feet bgs.	
		12					
			1				
		13]		Well constructed with 6-feet of 2	20-slot screen.	
		14					
		15	-				
		16]				
		17	-				
		18	1				
		19	1				
		20	-				
		21	1				
		21			Boring Completed at 11.5 feet B	GS. Groundwater encountered at 6.8 feet	bgs.

A	CON	1					
					AECOM Project Number: 60557313	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-14 Well Tag: BKP-259
350	MW-1	4 11-2-	17	2 5 15 10 1 2 2 1 1 1 1 1	Equipment Type/ model #: Mobi	ile G-2400	Location NAD 83
		-111/2		12000			47.6385 N, - 117.4981 W
	2 -	2-3			Auger type/diameter: 8-inch Hol	low Stem	117.4901 W
	~	ر الله ال	1		Contractor: Geologic Drill, LLC		
1 1 1 K - 6	50.10	14 0 2 M		NOR OF	Sampling method: 2-inch SPT		Sheet 1 of 1
				and a second	Hammer Weight: 140 Lbs		Above-Grade
				1. 1. 1.	Free Fall: 30"		Monument
ts	%	c		2	Location of Boring: Approx. 300	feet W of east property line.	Time 1330
uno	ery	ith ir et	hic	rapl	Surface conditions/ Topsoil Dep	th: Grass-covered.	
Blow Counts	Recovery %	Depth in Feet	Graphic Log	Soil Graph/ USCS			Date 11/2/17
B	Re		Grag Log	Sol	Material Description		
2-2-4		0 1 2 3 4 5 6 7 8		SP	Brown silty SAND with occasion Grey- brown SAND with trace sil	hal gravel. Loose, Moist. With organics. It, Loose, Moist.	
2-2-3		9 10 11 12 13 14		SP	Grey- brown SAND, Loose, Wet.		
		14	-				
		15		SP	Grey- brown SAND, Loose, Wet.		
2-2-5		15		or			
		40			lleaving early leaf	hu 2 fact of horizon Desire () ()	
		16			Heaving sands-lost approximate	ely 2-feet of boring. Boring terminated, we	ell set.
		<u> </u>	-				
		17	-				
		\vdash	4				
		18					
			4				
	7	19					
					Completed well depth is 14.5- fe	et bgs.	
		20			Well constructed with 10-feet of		
		21					
					Boring Completed at 16.5-feet B	GS. Groundwater encountered at 7.0 feet	bgs.

Please print, sign and return by mail to Department of Ecology

(SUBMIT ONE WELL REPORT PER WELL INSTALLED) Construction/Decommission (select one) Construction Decommission ORIGINAL INSTALLATION Notice	Type of Well (select one)
of Intent Number	Property Owner Spokene International Aupor
Consulting FirmURS	Site Address South Spatter Ed
Tag No BHW-566 MW 321	City <u>Spakane</u> County <u>Spakane</u> Location <u>SW114-114 NE114</u> Sec 28 Twn 25NR 42
WELL CONSTRUCTION CERTIFICATION: 1 constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief. Soriller Engineer Trainee Name (Print) Driller/Engineer /Trainee Signature Driller or Trainee License No. If trainee, licensed driller's Signature and License No.	Lat/Long (s, t, r Lat Deg Lat Min/Sec still REQUIRED) Long Deg Long Min/Sec Tax Parcel No. 25285.9011 Cased or Uncased Diameter Static Level Work/Decommission Start Date 9-9-14 Work/Decommission Completed Date 9-9-14
Construction/Design +	Theerballards
6" Above Ground monthmat	Formation Description
allocking and convicie	Bensterite
Topof sand pack	- seal
Topof 10'of 2"sch 40 PVL 010 screen	Silty Gravel
10401 10 0+ 2 sch 40 FVL OU schen	
	8
6ª Borehok	
	Basalt
	「「」
2" Threaded Bottom cop	
2" Threaded Botton St	
	1 C C C C C C C C C C C C C C C C C C C
	RECEIVED
	OCT 10 2014
	Department of Ecology Eastern Regional Office

RESOURCE PROTECTION WELL REPOR	RT CURRENT Notice of Intent No. <u>RE10449</u>
(SUBMIT ONE WELL REPORT PER WELL INSTALLED) Construction/Decommission (select one) AConstruction	Type of Well (select one)
Decommission ORIGINAL INSTALLATION Notice	
onsulting Firm U.R.S	- Property Owner Spakene International Airport
	- Site Address <u>South Spatter</u> Ld City <u>Spakane</u> County <u>Spakane</u> Location Sw1/4-1/4 <u>Mer</u> /4 Sec 28 Twn 25NR 42
ag No. <u>BHW-565</u> MW-A	City <u>Spokone</u> County <u>Spokone</u>
VELL CONSTRUCTION CERTIFICATION: I constructed and/or cept responsibility for construction of this well, and its compliance with all ashington well construction standards. Materials used and the information reporte ove are true to my best knowledge and belief. Enviller/Engineer Trainee Name (Print) riller/Engineer /Trainee Signature riller or Trainee License No.	ad Lat/Long (s, t, r Lat Deg Lat Min/Sec still REQUIRED) Long Deg Long Min/Sec If Tax Parcel No. 25285,9011 Cased or Uncased Diameter Static Level Work/Decommission Start Date 9-9-14 Work/Decommission Completed Date 9-9-14
Construction/Design	-) Work/Decommission Completed Dates
6ª Above Ground more mont	Well Diffe Formation Description
	Bensekite 51/7
2 too 1 2 prischup AVC Riser	
Topof 10'of 2"schup PVC 010 screen	51/4 Graml
6ª Borehak	Clay
2" Threaded Bottom coop	
2 (Michael	I.
	Î.
1.0	
	DECENTED
	RECEIVED
	OCT 10 2014
	Department of Ecology Eastern Regional Officia
e Department of Ecology does NOT warranty the Data	


The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-15 Well Tag: BKP-260		
					Equipment Type/ model #: Mo	bile G-2400	Location NAD 83		
					Auger type/diameter: 8-inch Ho	47.622229 N, -117.552446 W			
					Contractor: Geologic Drill, LLC				
					Sampling method: 2-inch SPT		Sheet 1 of 1		
					Hammer Weight: 140 Lbs				
					Free Fall: 30"		Above-Grade Monument		
s	%	-		>	Location of Boring: West of SE	Ammo Storage Road.	Time 800		
count	/ery	th ir et	hic	rapł	Surface conditions/ Topsoil De				
Blow Counts	Recovery %	Depth in Feet	Graphic Log	Soil Graph/	<u>م</u>		Date 7/31/18		
B	Re	-	ĽĞ	So	Material Description				
2-2-4	80%	0		GM	Brown silty GRAVEL with sand	. Loose, Dry. With organics.			
		1							
		2							
		3							
		4							
3-10-9		5		GP	Grey- brown GRAVEL with trac	e silt, Loose, Moist.			
3-10-9	50%	6							
		7							
		8	•						
		9	•						
		10		GP	Grey- brown GRAVEL with trac	e silt. Loose. Wet.			
6-10-9	50%	10				,,			
		12	{						
		12	1						
		13	-						
		14	1						
		15	-						
		10	-						
			-						
		18	-						
		19	-		Completed well depth is 12.0- f				
		20	-		Well constructed with 5-feet of	20-slot screen.			
		21			Boring Completed at 12-feet Bo	GS. Groundwater encountered at 10.0 feet	bgs.		

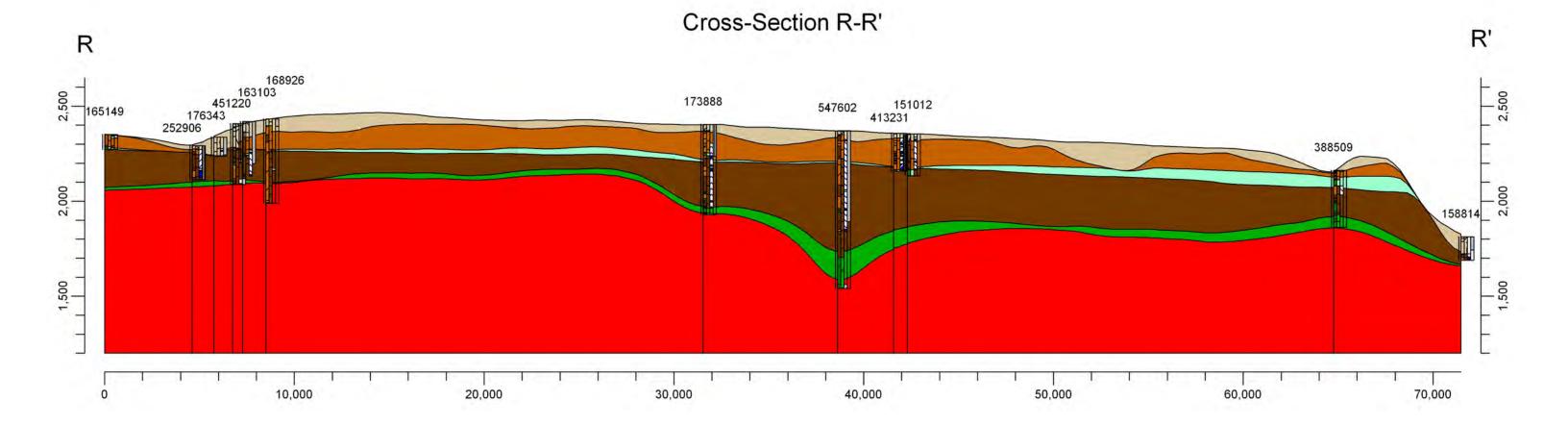
SEE Project Number: D279-001 Spokuma International Atipons. New Welle France/POC Moniterial Weile France/POC Equipment Type/ model #: Mobile G-2400 J.Creation NAD DB Assessment J.Creation NAD DB J.Creation NAD DB Contractor Geologic Drill, LLC Sampling method: 2-Jinch BPT Sheet Yell (J.LC) Sheet Yell (J.LC) Sampling method: 2-Jinch BPT Sheet 1 of 1 Hammer Weight: 140 Lbs Adaper type/diameter 3-Jinch BPT Hammer Weight: 140 Lbs Adaper type/diameter 3-Jinch BPT Hammer Weight: 140 Lbs Monument Time 700 Statistical Science Road. Time 700 Sampling method: 2-Jinch BPT Sheet 1 of 1 Sheet 1 of 1 Law 2 n 0 Sheet 1 Time 700 Sampling method: 2-Jinch BPT Sheet 1 Sheet 7/70/16 Sheet 7/70/16 Law 2 n 0 Sheet 7/70/16 Sheet 7/70/16 Law 3 1 1 Sheet 7/70/16 Sheet Sh										
Non-method 417.53968 W Auger type/diameter: 5-inch Hollow Stem 417.53968 W Auger type/diameter: 5-inch Hollow Stem 417.53968 W Contractor: Geologic Drill LLC Sheet 1 of 1 Sampling method: 2-inch SPT Above-Grade Hammer Weight: 140 LBs Above-Grade Pree Fail: 30" Above-Grade Surface conditions/ Topsoil Depth: Grass-covered. Unree 2-24 rs. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							New Wells PFOA-PFOS	MW-16 Well		
Note Note <th< th=""><th></th><th></th><th></th><th></th><th></th><th>Equipment Type/ model #: Mobile G-</th><th colspan="4">Equipment Type/ model #: Mobile G-2400</th></th<>						Equipment Type/ model #: Mobile G-	Equipment Type/ model #: Mobile G-2400			
Sampling method: 2-inch SPT Sheet 1 of 1 and 2 Above-Grade Above-Grade method: 2-inch SPT Above-Grade Above-Grade method: 2-inch SPT Above-Grade Above-Grade method: 2-inch SPT Bree 1 of 1 Above-Grade method: 2-inch SPT Bree 1 of 2 Above-Grade method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT Bree 1 of 2 Bree 1 of 2 method: 2-inch SPT <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Stem</th> <th>-117.558968 W</th>							Stem	-117.558968 W		
Hammer Weight: 140 Lbs Above-Grade Monument Monument Monument Monument Monument Monument Monument Monument Time 700 2.32 n 0 Brade conditions/ Topool Depth: Grass-covered. Date 73018 2.32 n 0 0 Brade conditions/ Topool Depth: Grass-covered. Date 73018 2.32 n 0 0 Brade conditions/ Topool Depth: Grass-covered. Date 73018 2.32 n 0 0 Brade conditions/ Topool Depth: Grass-covered. Date 73018 2.3 1 <										
By any and any and any and any										
Main Main <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
2-3-2 # 0 SM Brown silty SAND with occasional gravel. Loose, Moist. With organics.	nts	y %	Ē	ы	/40	Location of Boring: East of S. Center		Time 700		
2-3-2 # 0 SM Brown silty SAND with occasional gravel. Loose, Moist. With organics.	v Cou	over	pth Feet	hi I	Grap	Surface conditions/ Topsoil Depth: G	rass-covered.	Date 7/30/18		
2.3-2 w 0 1 1 1 <th>Blov</th> <th>Rec</th> <th>De</th> <th>Gra Log</th> <th>Soil</th> <th>Material Description</th> <th></th> <th></th>	Blov	Rec	De	Gra Log	Soil	Material Description				
Image: Section of the section of th	2-3-2	8%	1				avel. Loose, Moist. With organics.			
Image: Second	6-7-7	8%	4		ѕм	Grey- brown SAND with trace silt, Loo	ose, Moist.			
50/0 0% P 1 1 1			7							
Image: Second	50/0	0%			RX	Refusal on Basalt.				
Image: Completed well depth is 8.5- feet bgs.			10							
Image: Second			11							
Image: Second			12							
Image: Second			13	-						
16 16 17 17 18 19 20 21 Completed well depth is 8.5- feet bgs. Well constructed with 2.5-feet of 20-slot screen.			14							
1 17 18 19 20 21 Completed well depth is 8.5- feet bgs. Well constructed with 2.5-feet of 20-slot screen.			15							
18 18 19 19 20 20 21 21			16	4						
19 Completed well depth is 8.5- feet bgs. 20 Well constructed with 2.5-feet of 20-slot screen.			17	4						
Completed well depth is 8.5- feet bgs. 20 21			18							
20 Well constructed with 2.5-feet of 20-slot screen. 21 21			19							
			20							
			21							

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS	Boring Nu MW-17	Wel
						Assessment	Tag: BKP-	
					Equipment Type/ model #: Mo	bile G-2400	Location N 47.604917	Ν,
					Auger type/diameter: 8-inch He	bllow Stem	-117.55260	02 W
					Contractor: Geologic Drill, LLC		1	
					Sampling method: 2-inch SPT		Sheet 1	of 1
					Hammer Weight: 140 Lbs			e-Grade
					Free Fall: 30"			ument
S	%		1	2	Location of Boring: South of V	/. Electric Avenue.	Time	1000
Blow Counts	Recovery %	Depth in Feet	Graphic Log	apł	Location of Boring: South of V Surface conditions/ Topsoil De Material Description		1	
ow C	CO V	Jept Fe	ap	CS 🛛			Date	7/30/18
ā	Re		Grap Log	Soi	Material Description			
3-3-4	80%	0 1 2 3 4 5 6 7 8 8 9		SP	Brown silty SAND with occasio	silt, Loose, Moist.		
11-11-19	70%	10 11 12 13 13 14		SP		onal gravel, Medium-dense, Moist.		
15-19-26	80%	15 16 17 18 19	-	SP	Grey- brown SAND with occas	onal gravel, Medium-dense, Wet.		
		20		sм	Brown silty SAND with occasio	onal gravel. Medium-dense, Wet.		
10-11-12	90%	20			Completed well depth is 25.0-1			
		21			Well constructed with 10-feet of			
						BGS. Groundwater encountered at 15.5 fee		

APPENDIX C Spokane County Water Resources West Plains Hydrogeologic Database WRIA 54 Cross-Sections R-R' through V-V'

Figure 19 - Geologic Cross Section Key

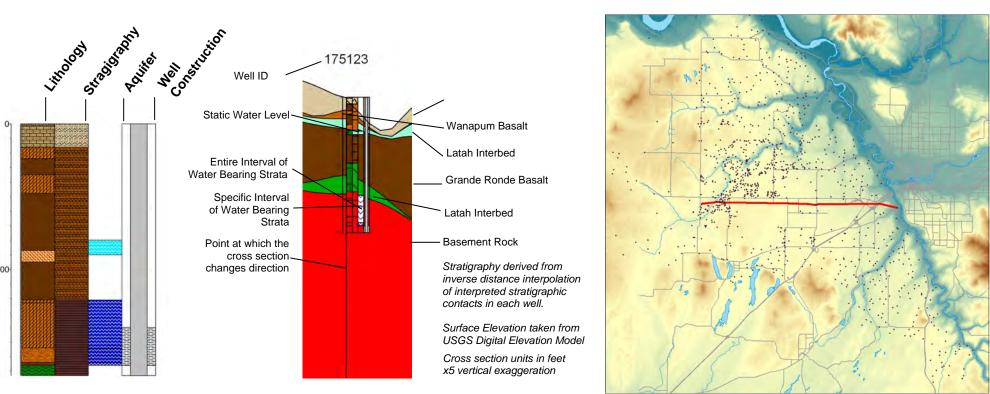
Well Location with interpreted aquifer

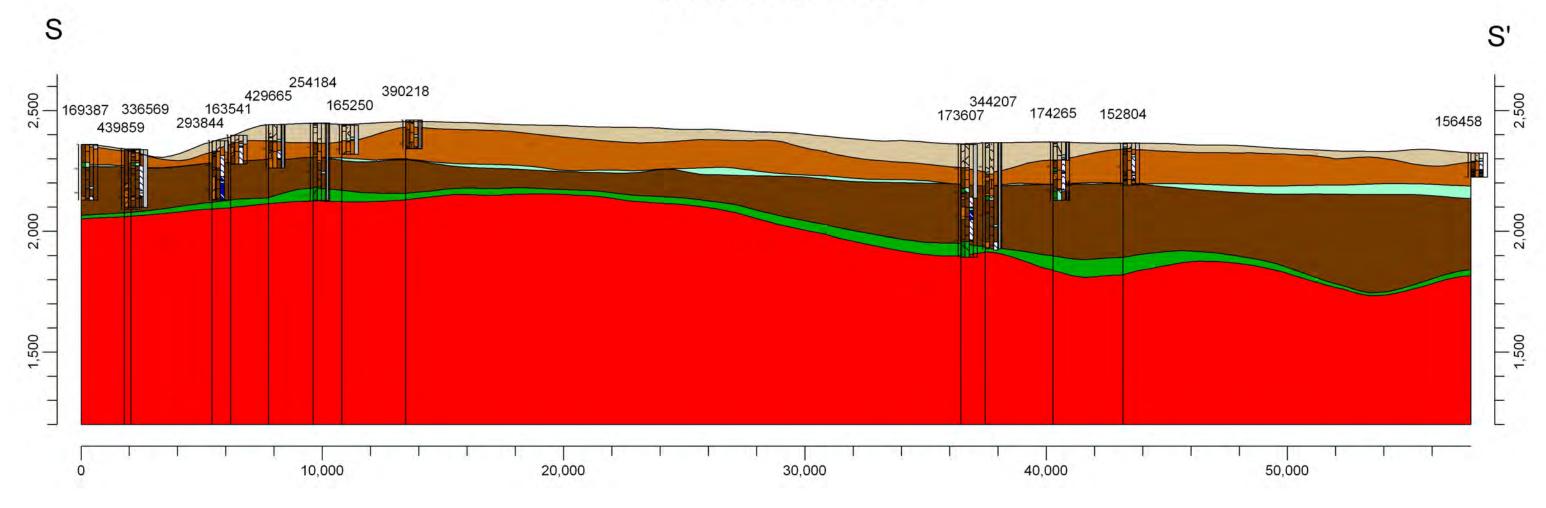

- basement
- grande ronde
- not identified
- unconsolidated
- wanapum

Study Area

- Geologic Cross Section

West Plains Hydrogeologic Database WRIA 54 Phase IV Implementation Project

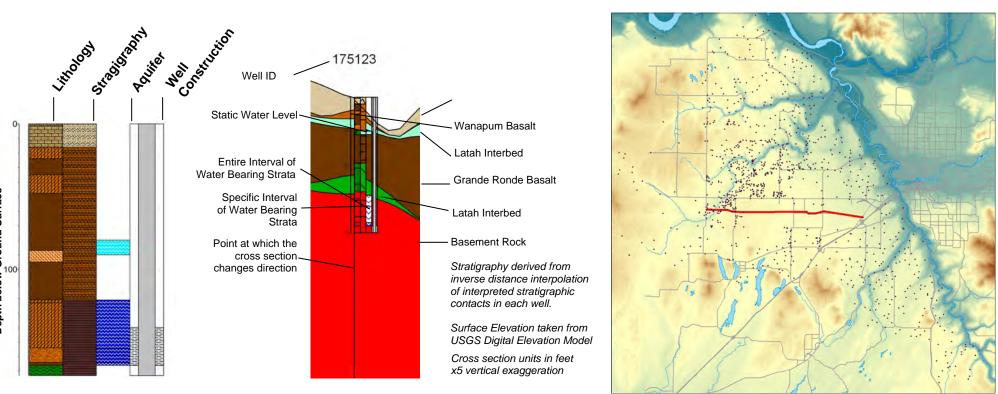

Lithology Key


10-basalt, fractured 11-basalt, medium 12-basalt, soft or decomposed 13-basalt, porous or vesicular 14-basalt w/clay or shale 15-sand, interbed 16-clay, interbed 17-gravel, interbed 18-sand and gravel, interbed 19-sand, gravel, clay, interbed 1-soil or overburden 20-clay, sand, interbed 21-basement rock 2-sand, unconsolidated 3-gravel, unconsolidated 4-clay, unconsolidated 5-sand and gravel, unconsolidated 6-basalt debris, unconsolidated 7-sand, gravel, and clay, unconsolidated 8-sand and clay, unconsolidated 9-basalt, hard

Stratigraphy Key unconsolidated basalt-Wanapum Latah I basalt-Grande Ronde Latah II basement Aquifer Key ace static water level Sur upper sand and gravel R Ground basalt basement Depth belo Well Construction Key casing perforations

screen

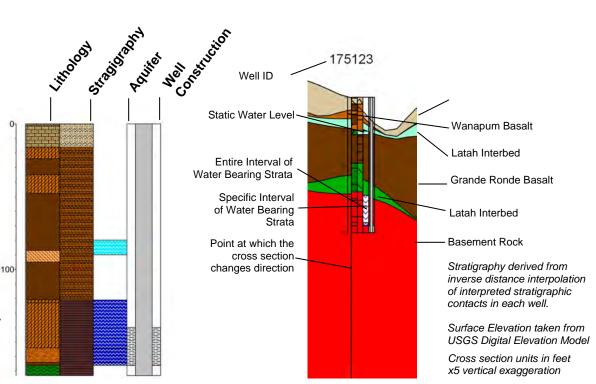
Cross-Section S-S'



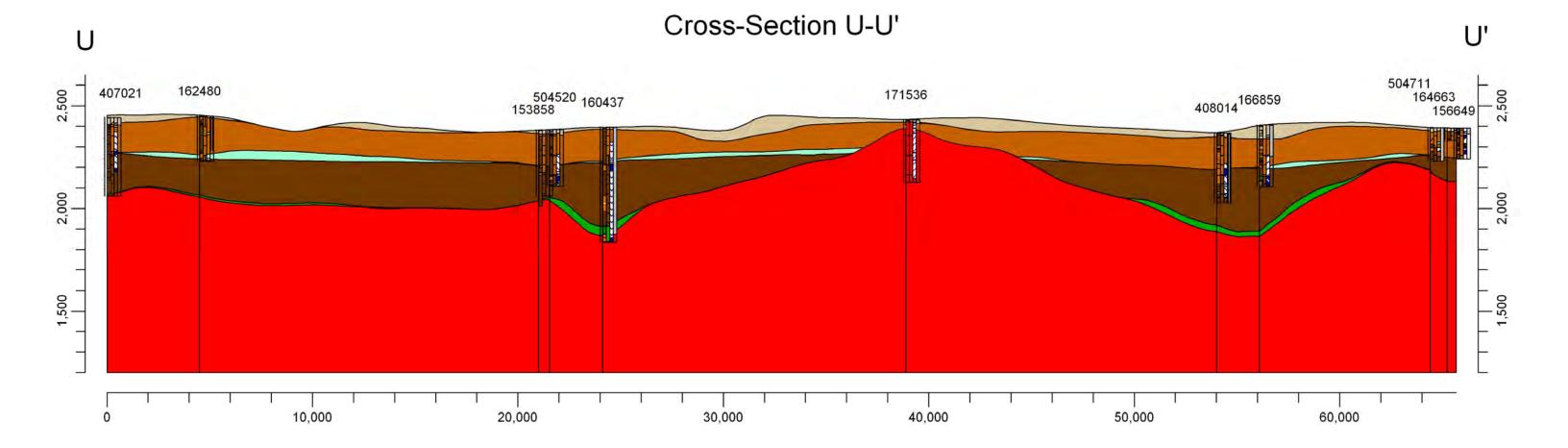
Lithology Key

10-basalt, fractured 11-basalt, medium 12-basalt, soft or decomposed 13-basalt, porous or vesicular 14-basalt w/clay or shale 15-sand, interbed 16-clay, interbed 17-gravel, interbed 18-sand and gravel, interbed 19-sand, gravel, clay, interbed 1-soil or overburden 20-clay, sand, interbed 21-basement rock 2-sand, unconsolidated 3-gravel, unconsolidated 4-clay, unconsolidated 5-sand and gravel, unconsolidated 6-basalt debris, unconsolidated 7-sand, gravel, and clay, unconsolidated 8-sand and clay, unconsolidated 9-basalt, hard

Stratigraphy Key unconsolidated basalt-Wanapum Latah I basalt-Grande Ronde Latah II basement Aquifer Key static water level Sur upper sand and gravel v Ground basalt basement Depth belo Well Construction Key casing perforations screen

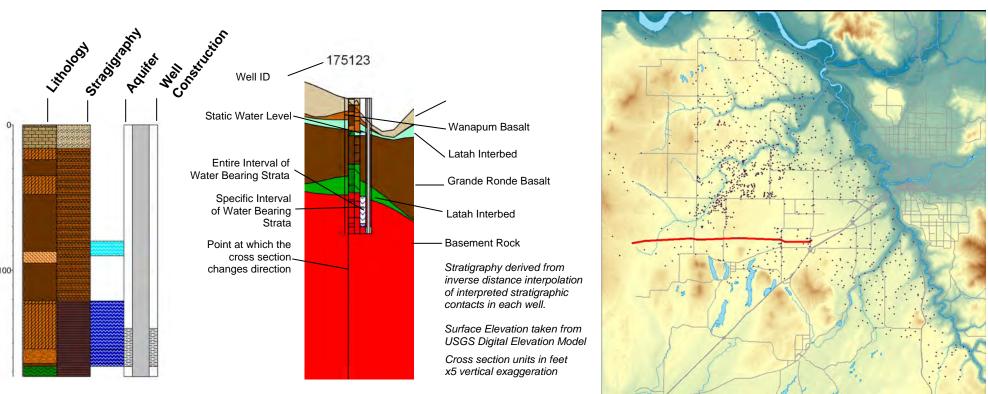


Lithology Key

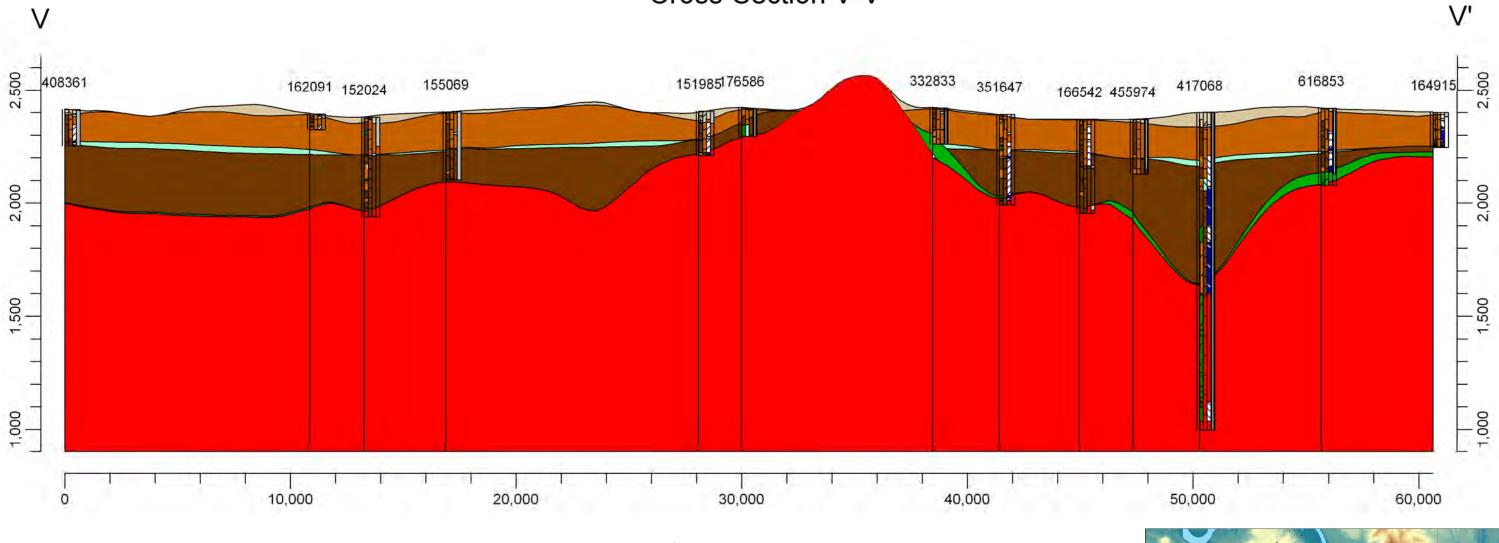


10-basalt, fractured 11-basalt, medium 12-basalt, soft or decomposed 13-basalt, porous or vesicular 14-basalt w/clay or shale 15-sand, interbed 16-clay, interbed 17-gravel, interbed 18-sand and gravel, interbed 19-sand, gravel, clay, interbed 1-soil or overburden 20-clay, sand, interbed 21-basement rock 2-sand, unconsolidated 3-gravel, unconsolidated 4-clay, unconsolidated 5-sand and gravel, unconsolidated 6-basalt debris, unconsolidated 7-sand, gravel, and clay, unconsolidated 8-sand and clay, unconsolidated 9-basalt, hard

Stratigraphy Key unconsolidated basalt-Wanapum Latah I basalt-Grande Ronde Latah II basement Aquifer Key static water level Sur upper sand and gravel v Ground basalt basement Depth belo Well Construction Key casing perforations screen



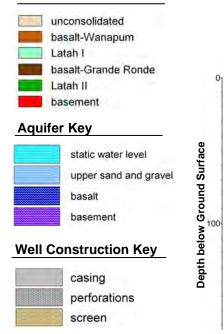
Lithology Key

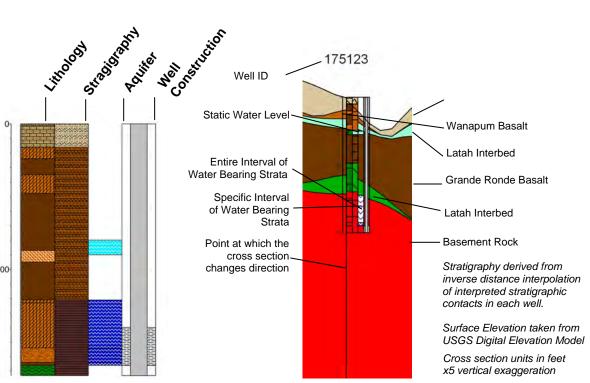


10-basalt, fractured 11-basalt, medium 12-basalt, soft or decomposed 13-basalt, porous or vesicular 14-basalt w/clay or shale 15-sand, interbed 16-clay, interbed 17-gravel, interbed 18-sand and gravel, interbed 19-sand, gravel, clay, interbed 1-soil or overburden 20-clay, sand, interbed 21-basement rock 2-sand, unconsolidated 3-gravel, unconsolidated 4-clay, unconsolidated 5-sand and gravel, unconsolidated 6-basalt debris, unconsolidated 7-sand, gravel, and clay, unconsolidated 8-sand and clay, unconsolidated 9-basalt, hard

Stratigraphy Key unconsolidated basalt-Wanapum Latah I basalt-Grande Ronde Latah II basement Aquifer Key static water level Sur upper sand and gravel K Ground basalt basement Depth belo Well Construction Key casing perforations screen

Cross-Section V-V'




Lithology Key

10-basalt, fractured 11-basalt, medium 12-basalt, soft or decomposed 13-basalt, porous or vesicular 14-basalt w/clay or shale 15-sand, interbed 16-clay, interbed 17-gravel, interbed 18-sand and gravel, interbed 19-sand, gravel, clay, interbed 1-soil or overburden 20-clay, sand, interbed 21-basement rock 2-sand, unconsolidated 3-gravel, unconsolidated 4-clay, unconsolidated 5-sand and gravel, unconsolidated 6-basalt debris, unconsolidated 7-sand, gravel, and clay, unconsolidated 8-sand and clay, unconsolidated 9-basalt, hard

Stratigraphy Key

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B

Historical Reports

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B.1

Fairchild Airforce Base, Perpetual Flowage Document (provided by Fairchild Airforce Base on 12 June 2024)

FEDERAL COLLUNICATIONS COLLISSION PERMIT TO OTHER FEDERAL GOVERNMENT DEPARTMENT OR AGENCY TO USE PROPERTY ON

A parcel of land in the west half of Government Lot 12, Section 2, Township 24 North, Range 41 East of the Willamette Meridian, Spokane County, Washington, described as beginning at a point which is 466.69 feet south and 30.00 feet east of the northwest corner of said Government Lot 12; thence east 466.69 feet; thence south 183.31 feet; thence east 164.43 feet; thence south 677.00 feet; thence west 631.12 feet; thence north in the west right-of-way line of Craig Road S60.31 feet to the point of beginning, containing 11.62 acres, more or less.

The United States Air Force is hereby granted permission to employ the described property as part of an industrial and storm drainage outfall from Fairchild Air Force Base as shown substantially in red on Exhibit "A", attached hereto and made a part hereof.

THIS PERMIT is granted subject to the following provisions and conditions:

1. That the use and occupation of the said premises shall be without cost or expense to the FCC, under the general supervision and subject to the approval of the officer having immediate jurisdiction over the premises, and subject also to such rules and regulations as he may from time to time prescribe.

2. That the permittee shall, at its own expense and without cost or expense to the FCC, maintain and keep in good repair and condition, including the control of noxious weeds, the premises herein authorized to be used insofar as it may legally do so.

3. That any interference with or damage to property under control of the FCC incident to the exercise of the privileges herein granted shall be promptly corrected by the permittee to the satisfaction of the said officer.

4. That no additions to or alterations of the premises shall be made without the prior consent of the said officer.

5. In the event flowage from the outfall, except that occuring during the spring run-off, shall approach the direction finding

equipment by a distance less than 500 feet the permittee shall take immediate steps to direct flowage to a greater distance from the Commission's equipment by constructing at the permittee's expense, dams, drainage ditches or other devices to prevent encroachment of flowage closer than 500 feet to the Commission's equipment, provided however, that no part of the construction shall be of a nature that will interfere with the Commission's monitoring or direction finding activities, and no pipes or conduits shall be installed on the property without the approval of the officer in charge of the property.

6. This agreement, with the rights and privileges herein granted, shall be subject to cancellation or termination only by mutual agreement of the parties, or in the event the terms and conditions hereof are not fulfilled, or in the event the Air Force abandons the use of the premises for the purposes herein granted. In either of the latter two events, cancellations may be effected by either party hereto upon thirty (30) days' written notice to the other; and upon the expiration of said thirty (30) days after service of such notice, this agreement and the rights and privileges hereby granted, as well as the obligations hereby imposed upon the parties, shall absolutely cease and determine. All obligations requiring expenditures of funds shall be subject to the availability of legal appropriations therefor.

ACCEPTED FOR THE UNITED STATES AIR FORCE

By: Jetala

U.S. Army Engineer District, Seattle Corps of Engineers

Dated: 16 March 1959

ACCEPTED FOR THE FEDERAL COLMUNICATIONS COLMISSION

FEB 9 1983

George Gregory Moen, Chief Real Estate Division Seattle District, Corps of Engineers P.O. Box C-3755 Seattle, WA 98124

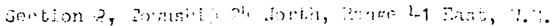
Dear Mr. Moen:

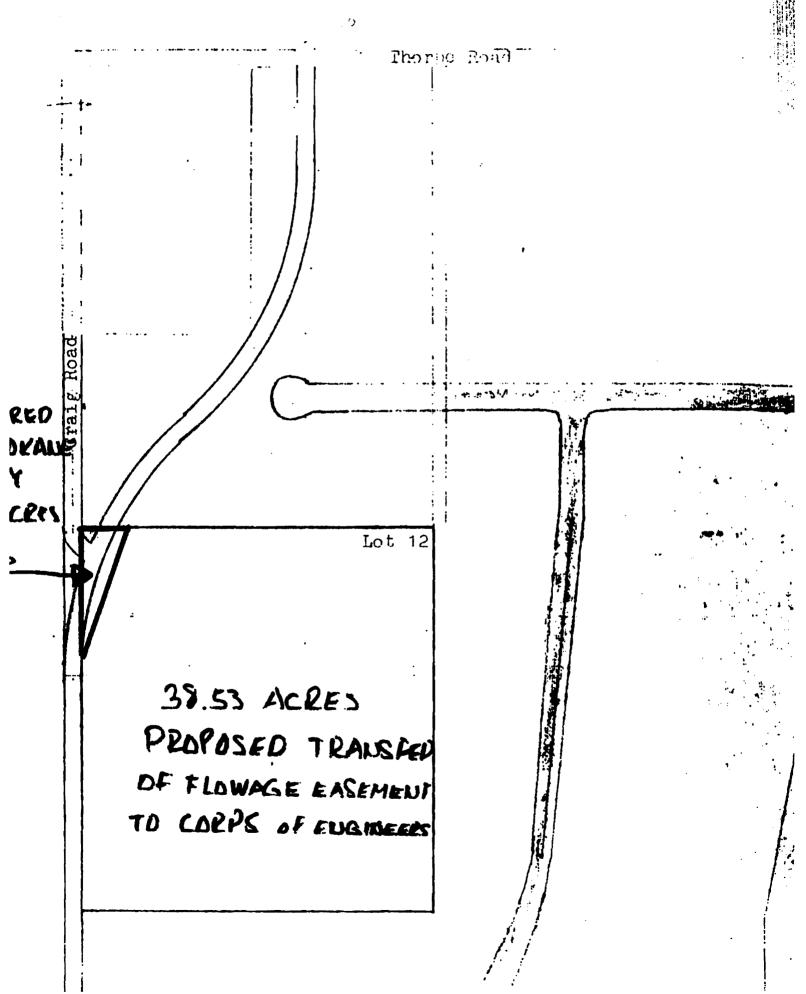
This letter amends our letter of December 7, 1982, concerning the value of the 39.41 acre FCC Spokane Monitoring Station, Spokane County, Washington, GSA Control Number Z-Wash-890.

Prior to reporting the property excess, the Federal Communications Commission issued a permit to the Air Force for use of 11.62 acres of the FCC Monitoring Station as a storm drain outfall and the property was reported to GSA subject to this permit. The fair market value of the flowage easement quoted in our letter of December 7, 1982, was \$78,800 based on an easement over the entire tract. Inasmuch as the Permit covering the 11.62 acres existed prior to reporting the property excess, the Air Force requires a flowage easement only over the remaining 27.79 acres.

We have recently been advised that Spokane County has a requirement to make a minor realignment of Craig Road near the northwest corner of the property. This change encompasses a triangular area at the extreme northwest corner bordering the easterly right-of-way of Craig Road extending easterly from Craig Road 170 feet and southerly along the east right-of-way of Craig Road about 450 feet encompassing approximately 0.88-acre. (See attached drawing). This conveyance to the County would not be subject to the flowage easement, however, the County will be required as a condition of the conveyance to take any necessary precaution to protect the integrity of the Air Force's outfall system including rerouting of any ditch or tile network in order to provide continuity of storm water flow onto the property. With the County being required to comply with the above conditions we do not anticipate any adverse impact on the use of the remaining 38.53 acres by the Air Force.

The fair market value for a flowage easement covering 26.91 acres (38.53 acres less the 11.62 acres already under permit to the Air Force) has been determined to be \$53,800. The flowage easement description will encompass the 38.53 acres.


Please submit to this office within 30 days from date of this letter, a completed GSA Form 1431 requesting transfer of the property indicating that funds are available for reimbursement. Upon receipt of the Request for Transfer, we will request that our Finance Division prepare and forward to you Standard Form 1081 in the amount of \$53,800 for your execution. Upon completion of the transfer of funds, we will prepare the easement transfer document.


If you have any questions, please let us know.

Sincerely,

e flay JAMES R. CLAY

Acting Assistant Chief Disposal Branch Real Estate Division

					PAGE	THIS BLOCK FOR USE BY	
			1. GSA CONTROL NO.		1	AGENCY RECEIVING REQUEST	
REQUES	T FOR TRANSI	FER OF	Z-Wash-890		- 70		
EXCESS	REAL AND RE	LATED	2. DATE OF REQUEST			DATE REQUEST RECEIVED	
PERS	SONAL PROPE	RTY .			2 PAGES		
TO (Name, address quested to transfer	and ZIP Code of a the property)	gency being re-	4. FROM (Name, add requesting transf	ress and ZIP (ode (er of the property)	of agency	HOLDING AGENCY NO. (If any)	
General Ser			Commander			ACOUISITION COST	
	AICC2		U.S. Army	Corps of Er	ngineers	ls	
Region 10	hington 980	02	Seattle Di			APPRAISED FAIR MARKET VALUE	
Auburn, Wasl	ningron 300	02	P. O. Box			\$	
			Seattle, W		8124	REIMBURSEMENT	
	•		Deallie, "	20112110-001 ·		\$	
					d al de		
. REQUESTING AGEN	CY'S REPRESENTAT!	VE TO BE CON-	6. PROPERTY IDENT	IFICATION AND ADDI	SESS (INCIDA		
TACTED FOR FURTH	HER INFORMATION (lame, address and	Federal Communications Commission Monitoring S				
T. 1. B. W.			Craig Road				
Linda B. Ve			Spokane, Washington				
Real Estate							
Seattle, Di	st. C. of E. -3755 Seats	10 WA 9812	4				
·		RE	AL PROPERTY RE			UTILITIES	
· · · · · · · · · · · · · · · · · · ·	STRUCTURES		B. LA		с	UTICITES	
	NUMBER OF	FLOOR AREA (Sq. FL)	GOVERNMENT'S	AREA (Acres or Sq. FL.)			
USE (a)	BUILDINGS (b)	(c)	(a)	(6)	None	2	
I) OFFICE			(1) FEE		1		
I) STORAGE			(2) LEASED				
3) OTHER(Specify)			(3) OTHER (Specify)				
			Easement	39.41			
			(4) TOTAL	39.41			
4) TOTAL		1			9. ARE FUN	IDS AVAILABLE FOR REIMBURSEMEN" TRANSFER OF THIS PROPERTY?	
	L PRUPERIT READER				FOR THE	IRANGTER WE INTO THE CATT	
None						X YES NO	
						A	

0. CERTIFICATION

Certification is hereby made that this agency has a need for the property identified above to carry on an approved program; that he transfer thereof to this agency for the purposes indicated would be in accord with the intent of the Congress with respect to the rogram; that the requirement cannot be satisfied by better use of this agency's existing property; and that the proposed land use i consistent with FPMR 101-47.201-1 and 201-2. The statement of justification under block 11 below for the transfer of the property equested is complete and accurate.

	TITLE	DATE
GEORGE GREGORY KOEN		
Will Y Ulacity 4000	Chief, Real Estate Division	4 NOV 1003
GEORGE GREGORY HOEN	Seattle District. Corps of Engine	

1. STATEMENT OF JUSTIFICATION (This statement must include data with respect to all factors covered in FPMR 101-47.4904-1(c) Block 11, Instructions for Preparation of GSA Form 1334).

Transfer is requested pursuant to Title 40, United States Code, Section 483. The easement is required for storm and industrial drainage overflow from Fairchild Air The Air Force has had a permit from the Federal Communications Commission Force Base. for overflow over 11.62 acres of the requested easement since March 1959.

A copy of the acquisition authorization is attached. This acquisition is authorized under the provisions of 10 USC 2672.

There is no other available property in the area suitable for the overflow area.

An estimate of the probable value of the 39.41 acres of easement is \$55,000.00.

Continued use of the property will continue to be compatible with state, regional and local agencies program. The property is not eligible for listing on the National Register of Historic Places.

A legal description, drawing and flowage easement estate are attached for your reference.

•. •

ī.

FAIRCHILD AIR FORCE BASE, WA Perpetual Flowage Easement

LEGAL DESCRIPTION

All of Government Lot 12, Section 2, Township 24 north, Range 41 east, Willamette Meridian, Spokane County, Washington, lying easterly of the public road right-of-way running along the west boundary of said lot.

Contains 39.41 acres, more or less.

 Written by:
 DJD 12 Sep 83

 Chkd by:
 EHL 12 Sep 83

 Prfd by:
 DJD 16 Sep 83

 Rev by:
 DJD 31 Oct 83

 Prfd by:
 DJD 3 Nov 83

 WANG:
 O342P

ESTATE

The estate hereby conveyed is the perpetual right, power, privilege and easement in, upon, over and across all of Government Lot 12, Section 2, Township 24 north, Range 41 east, Willamette Meridian, Spokane County, Washington, lying easterly of the public road right-of-way running along the west boundary of said lot, for the purposes set forth below:

(a) Permanently or intermittently to overflow, flood and submerge the lands with waters and industrial waste from Fairchild Air Force Base, Spokane County, Washington, together with the permanent right, power and privilege to enter upon said lands to inspect and improve water flow conditions and to remov any natural or artificial obstructions, which in the opinion of the representative of the United States in charge may be detrimental to the operation and maintena of the project, including underbrush or debris, as may be necessary from time to time, and to clear, improve and maintain existing water courses, streams and drainage channels.

(b) The permanent right, power and privilege to enter upon said lands for the purpose of constructing, maintaining, operating and patrolling any necessar drainage structures or appurtenances.

(c) The permanent right, power and privilege to prohibit construction or maintenance of structures for human habitation on said lands.

(d) All rights and privileges which may be used or enjoyed without interfe with or abridging the rights and easements hereby acquired are specifically reserved to the Grantors, their heirs and assigns.

		DISTRIC	ст	/			NO CARE	SON REQUIRED
WORK O	RDER/COMPLETION			APPROPRIATI	ON .73330	0 377-	PROJECT	rchild AFB,WA
LASS OF WORK				6725 P351 MCAF (BAAN 83-			6725) ^{-a1}	AFB,WA
Militar	y Construction,	Air Force			IGINAL ESTIMA	TE	JDATE SORK IS	5 TO START
Fairchi	lld AFB (SAC), W	A		20Mar 84		000.00	20 Mar 8	
ETHOD OF V	10.214				, C C Ç	000.00	ESTIMATED CO	DAPLETION DATE
	CT DHIRED LABOR	BASIS FOR ORDER		TYPE OF ESTI	MATE	· · · · · · · · · · · · · · · · · · ·	FEATURE AND	SUB-FEATURE NR
		JOB ⊡FI	SCAL YEAR	XORIGINAL	. CREVIS	ËD		3000 30006
ACCOUNT NUMBER	DESCRIPTICI	OF WORK		ESTIMATED		T		
			TOTAL QUANTITIES	TOTAL COST	UNIT COST	TOTAL QUAL	ACTU	L COST UNIT COST
	Land Acquisitio	on		\$55,000.0				
							:	
	• .							
							•	
$\overline{\langle } \rangle$		TOTALS	5	55,000.00				
ATRICIA	M. DICE, Ch, Pr OFGANISATION	UNITI	3.7:/84 CI	AME)	LSON, Ch	, F&A Br		
	LUDED IN THE APPROVED			IOVED		OF THE COM	MAGLLERI	(DATE)
44.15	CARD, Ch, Budget	MERANCHI			DISTRICT ENCI	INFER CORE	e ne en contene	
·Ullumit		ETED	ANO	UN 13 REPORTE	Ο ΑΒΟΛΕ ΤΟ ΥΙ	CTUAL COSTS	ARE REFLECT	ED IN THE COST
LTE POSTER	Trend to the			DUNTS AS OF TH	IS DATE	-		

PLITTLIT AFTROPRIATIONS AND/OK FUNDS	DEC 2 8 1983
tment, establishment, bureau, or other billing	BILL NO.
eneral Services Administration	
nance Division-Accounts Receivable 9BCR	PAID BY
tnient, establishment, bureau, or office billed	
 U.S. ARMY CORPS OF ENGINEERS Seattle District P.O. Box C-3755 	
SEATTLE, WA. 98124	

NO.	DATE OF	ARTICLES OR SERVICES	QUAN-	UNIT	PRICE	AMOUNT
	DELIVERY		TITY	COST	PER	DOLLARS AND CENTS
		Transfer of a permanent flowage easement over approximately 0.88 acre of the former Spokane FCC Monitoring Station. GSA Control No. Z-WASH-890				1,200.00
ĺ				Ŧ	OTAL,	<u>+1 200 00</u>
ce in	payment hereo	should be sent to-	L		UTAL,	\$1,200.00
ne.	ral Serv	vices Administration				
na	nce Divi	sion Accounts Receivable Branch 98	ACR			
5	Market S	Street, San Francisco, Ca. 94105	JON			
		ACCOUNTING CLASSIFICATION-Billin	a Offic	•		
			<u>o - jj</u>			
	0952	114.1/409.1				
	0952	303.5/114.1				
		CERTIFICATE OF OFFICE BILLED				
	rtify that the a	above articles were received and accepted or the services perfor or fund(s) as indicated below; or that the advance payment r		stated an is appro	d shou wed an	ld be charged to the d should be paid as
I ce ropri icatec		Avener St	11cm	N	pr.	
cated	ch 1984 (Date)	GEORGE GREGORY M	Janio DEN, C	chief,	din certifying Real	officer) Estate Divisi
icated	r. ch 1984	Allny States	SEN, C	hief,	Nin certifying Real	olficer) Estate Divisi

÷,'

Department, establishment, bureau, or office billing G.S.A., Finance Div., Accts. Receivable Branch 9BCR, 525 Market Street, San Francisco, Ca. 94105 PAID BY Department, establishment, bureau, or office billed U.S. ARMY CORPS OF ENGINEERS Seatle District P.O. Box C-3755 Seatle, Wa. 98124

PN84 - 108

	DATE OF		QUAN- UNIT PRICE		AMOUNT	
ORDER NO.	DELIVERY	ARTICLES OR SERVICES	TITY	COST	PER	DOLLARS AND CE
		Payment of FMV for transfer of a permanent flowage easement over +38.53 acres of the former Spokane FCC Monitoring Station G.S.A. Control No. Z-WASH-890				\$53,800.0
			l	٩	IOTAL,	\$53,800.0

Remittance in payment hereof should be sent to-G.S.A., Finance Division

Accounts Receivable Branch 9BCR 525 Market Street, San Francisco, Ca. 94105

ACCOUNTING CLASSIFICATION-Billing Office

J7 0951 114.1/409.1.

C2 0951 303.5/114.1 🧠

CERTIFICATE OF OFFICE BILLED

I certify that the above articles were received and accepted or the services performed as stated and should be charged to the appropriation(s) and/or fund(s) as indicated below; or that the advance payment requested is approved and should be paid indicated.

file officer) *

VKN .//Chief Real Retate Div GEORG (Title)

ACCOUNTING CLASSIFICATION-Office Billed

Paid by Check No.

ENCE	OR OFFICE SYMBOL	SUBJECT			
E-AQ		Request for Check - Payment and 0.88 acres - Spokane FC			
RU:	NPSF-Property Br Attn: Barbara Schlo NPBT NPPC-F	FROM Ch, Real Estate Div	DATE	23 March 1984 VERT/ds/3666	CMT

It is requested a check for \$55,000.00 be forwarded to General Services Administratio nce Division, Accounts Receivable Branch 9BCR, 525 Market Street, San Francisco, CA 9 vouchers attached. Please advise us when check has been mailed.

The work order for this acquisition and ENG Form 4480 are also enclosed.

Chief, Real Estate Division

APR 6 1984

Marked 6 Cept 82

Pauline Morgan'

PAULINE MORGAN, NPPDC-F-D CHIEF, DISBURSING SECTION 221-6962

c1

Z-Wash-890

MAY 11 1984

Mr. George Gregory Moen Chief, Real Estate Division Seattle District, Corps of Engineers P.O. Box C-3755 Seattle, WA 98124

Dear Mr. Moen:

Your letter of November 7, 1983, requested transfer of a permanent flowage easement over 39.41 acres at the former FCC Monitoring Station, Spokane County, Washington. Reimbursement in the amount of \$55,000.00 has been received from your agency.

Pursuant to the authority delegated under the Federal Property and Administrativ Services Act of 1949, 63 Stat. 377, as amended, such an easement over the proper is hereby transferred to the Department of the Air Force subject to compliance with the provisions of the National Environmental Policy Act of 1969, including the preparation of an environmental impact statement, if necessary, and the Flood Disaster Protection Act of 1973. The legal description of the property rights transferred is enclosed as Exhibit A.

In order to expedite the transfer of this property, we are recommending the Federal Communications Commission take action to transfer custody and accountability of the property to your agency effective 12:01 a.m., June 15, 1984. If for any reason you cannot accept custody and accountability as of that date, please advise us no later than May 30, 1984.

Mr. Charles D. Ferris, Chairman, Federal Communications Commission, Field Operati Bureau, 1919 M. Street NW, Washington, DC 20554 (telephone FTS 632-7593), will act on behalf of that agency in transferring custody and accountability of the property. A copy of our letter of this date to the FCC authorizing the transfer of custody and accountability is enclosed for your file.

Please sign and return the enclosed copy of this letter acknowledging receipt of this communication. If we may be of further assistance in accomplishing the transfer, please let me know.

Sincerely,

KENNETH E. LINDEBAK Director Disposal Division Office of Public Buildings and Real Property

Enclosures

Original received and concurred in:

Title Saula Baudal, Corps of Elegin

DEPARTMENT OF THE ARMY SEATTLE DISTRICT. CORPS OF ENGINEERS P.O. BOX C-3755 SEATTLE. WASHINGTON 98124

EPLY TO

May 22, 1984

Real Estate Division Acquisition Branch

Kenneth E. Lindebak, Director Disposal Division Office of Public Buildings and Real Property General Services Administration, Region 10 **GSA** Center Auburn, Washington 98002

Dear Mr. Lindebak:

Enclosed as requested is the executed copy of your letter of May 1:19 acknowledging receipt thereof. Thank you for your cooperation and assiance

Sincerely,

George Gregory Moen Chief, Real Estate Division

Enclosure

FEDERAL COMMUNICATIONS COMMISSION

WASHINGTON

MAY 3 0 1984

OFFICE OF MANAGING DIRECTOR

Mr. George Gregory Moen Chief, Real Estate Division Seattle District, Corps of Engineers P.O. Box C-3755 Seattle, Washington 98124

Dear Mr. Moen:

The purpose of this letter is to transfer the custody and accountability of a permanent flowage easement over 39.41 acres of the former Federal Communications Commission Monitoring Station, Spokane County, Washington. The legal description of the property rights is enclosed. If you agree to accept the custody and accountability of this property, effective 12:01 a.m., June 15, 1984, please sign at the space indicated below and return it to me. I will use this as the document GSA requested in their letter of May 11, 1984, showing the transfer of the above property.

Sincerely,

Inchi

Edward J. Minkel Managing Director

Enclosure

I accept the custody and accountability of the above property effective 12:01 a.m., June 15, 1984.

NAME

GEORGE GRAGORY MOEN Chief, Real Estate Division Scattle District, Corps of Engineers

TITLE

7 JUN 1984

DATE

Acquisition Branch

Mr. Edward J. Minkel, Managing Director Federal Communications Commission Room 316, Brown Building 1200 - 19th Street Northwest Washington, D. C. 20554

Dear Mr. Minkel:

Enclosed as requested is acceptance of custody and accountability of permanent flowage easement over 39.41 acres of the former Federal Communications Commission Monitoring Station, Spokane County, Washington.

Sincerely,

Enclosure

GEORGE GREGORY MOEN Chief, Real Estate Division

Copy furnished: $\sqrt{P&C}$ Branch, Historical Files, w/encl F&A Branch, Property & Accounting

WEL 738 PAGE

8502220140

64

QUITCLAIM DEED

The UNITED STATES OF AMERICA, acting by and through the Administrator of General Services under and pursuant to the powers and authority contained in applicable provisions of the Federal Property and Administrative Services Act of 1949, 63 Stat. 377, as amended, and regulations and orders promulgated thereunder, (hereinafter referred to as "Grantor"), for a monetary consideration of FIFTY TWO THOUSAND DOLLARS (\$52,000), and other valuable consideration, does hereby convey and quitclaim to WILLIAM J. HOUK, as his separate property, (hereinafter referred to as "Grantee"), his successors and assigns, all of Grantor's right, title and interest in and to the following described property (hereinafter referred to as "Property") situated in Spokane County, State of Washington.

Parcel B

Lot 12, Section 2, Township 24 North, Range 41 East, Willamette Meridian, Spokane County, Washington, EXCEPT a parcel of land identified as Beginning at the northwest corner of Lot 12 said Section, Township and Range thence easterly in the north line of said Lot 12 200 feet; thence southwesterly to a point on the west line of Lot 12 which point lies 550 feet south of the northwest corner of said Lot 12; thence north along the west line of Lot 12 550 feet to the point of beginning.

RESERVING TO the United States of America and its assigns the right to permanently or intermittently to overflow, flood and submerge the land herein described with waters and industrial waste from Fairchild Air Force Base, Spokane County, Washington, together with the permanent right, power and privilege to enter upon said lands to inspect and improve water flow conditions and to remove any natural or artificial obstruction, which in the opinion of the representative of the United States in charge, may be detrimental to the operation and maintenance of the project, including underbrush or debris, as may be necessary from time to time, and to clear, improve and maintain existing water courses, streams, and drainage channels. Also, the permanent right, power and privilege to enter upon said lands for the purposes of constructing, maintaining, operating and patrolling any necessary drainage structures or appurtenances, and the permanent right, power and privilege to prohibit construction or maintenance of structures for human habitation on said lands.

TOGTHER WITH

Improvements located thereon.

All rights and privileges which may be used or enjoyed without interfering with or abridging the rights described in the Reservation to the United States.

SUBJECT TO

Existing easements for public roads and highways, public utilities, railroads and pipelines and to other easements of record.

TO HAVE AND TO HOLD the Property together with all the privileges and appurtenances thereto belonging, unto Grantee, his successors and assigns, forever.

Excise Tax Paid on By acceptance of this deed, the Grantee herein named covenants for Sale Amt. Pd. Mene D.E. "SKIP" CHILBERG

Spokene County Treas. 303485

VGL: 738 PAGE

65

The Government shall be held harmless from all claims for damage that may accrue to any or all of the property herein described by reason of the overflow of water and industrial waste or by the exercise of any or all of the rights, powers, privileges enumerated in the Reservation to the United States of America described above.

No structures or alterations to existing structures shall be made which would exceed fifty (50) feet in height unless a determination of no hazard to air navigation is issued by the Federal Aviation Administration in accordance with CFR Part 77 "Objects Affecting Navigable Air Space," or under the authority of the Federal Aviation Act of 1958, as amended.

The Property was both duly determined to be surplus to the needs and requirements of the United States of America and assigned to General Services Administration for disposal pursuant to authority contained in the said Federal Property and Administrative Services Act as amended, and applicable orders and regulations promulgated thereunder.

IN WITNESS WHEREOF, Grantor has caused this instrument to be effective as of April 25, 1983.

UNITED STATES OF AMERICA Acting by and through the Administrator of General Services

BY Director, Disposal Division Public Buildings and Real Property

STATE OF WASHINGTON)

COUNTY OF KING

On this 24^{-1} day of May, 1983, before the undersigned, a Notary Public in and for the State of Washington, personally appeared Keuneth E_{1100} ebak , to me known to be the Director, Disposal Division, Public Buildings and Real Property, General Services Administration, Region 10, and to me known to be the individual described in and who executed the foregoing instrument and who under oath stated that he was duly authorized, empowered, and delegated by the Administrator of General Services to execute the said instrument and acknowledged the foregoing instrument to be his free and voluntary act and deed, acting for and on behalf of the Administrator of General Services, acting for and on behalf of the United States of America, for the uses and purposes therein mentioned.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year in this certificate above written.

seal the day and year in this certificate above written. REDUEST OF WW lim Public in and for the State Notary 11 32 AN '85 Fei 22 Washington, residing in 🗠 WILLIAH E. DONAHUE AUDITOR BPOKANE COUNTY. WAS W 5905 Vale Same 99208 1.55

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B.2

AECOM, 2017a. DRAFT- Groundwater Monitoring for Perfluorinated Chemicals.

July 14, 2017

Mr. Matt Breen Spokane International Airport 9000 West Airport Drive Spokane, Washington 99219

Re: DRAFT -Groundwater Monitoring for Perfluorinated Chemicals Spokane International Airport Spokane, Washington SIA Environmental #4304-00 <u>AECOM Job No.:60545218</u>

Dear Mr. Breen:

Attached are the results and supporting documentation for the recent, limited groundwater monitoring event of four select monitoring wells that were analyzed for the perfluorinated chemicals, Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS). This monitoring event was conducted per your request so that Spokane International Airport's (SIA) could ascertain if detectable levels of perfluorinated chemicals are present in shallow groundwater beneath the airport and if concentrations present a risk to human health and the environment.

Our scope of work for this project included the following tasks:

- Performed one limited groundwater monitoring and sampling event on May 23, 2017. Groundwater samples were collected from downgradient monitoring wells MW-1, MW-3 and MW-5 and from the inferred upgradient well, MW-8 (Figure 1).
- Goundwater samples were shipped to ALS Global Laboratories' (ALS) laboratory in Kelso, Washington for analysis. ALS is accredited by the Washington State Department of Ecology with the certification number C544. The samples were analyzed for PFOA and PFOS by USEPA Method 537M. Samples were submitted on a standard turnaround time of 15-business days. An AECOM project chemist reviewed all of the analytical data and no data usability issues were identified.
- Prepared this letter report presenting the results of the sampling event, compared the analytical results to national standards, and provided our conclusions and recommendations.

Groundwater Sampling

Depth to water in each well was measured to the nearest $1/100^{\text{th}}$ of a foot prior to sampling. Groundwater samples were collected from each well using a peristaltic pump. The wells were purged and sampled using low-flow sampling techniques where flow rates were generally about 0.3 to 0.5 liters per minute (1/min). The purge rate was adjusted to minimize the drawdown of groundwater in the wells during purging.

AECOM 528 E. Spokane FallsBlvd. Suite 503 Spokane, WA 99202 Tel: 509.928.4413 www.AECOM.com Field parameters were measured with a Horiba-U52 water quality meter. Parameters include pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Once field parameters stabilized within 10% from reading to reading for each parameter, laboratory-prepared sample containers were filled with water from the wells, sealed and placed on ice pending next-day transport to the laboratory.

Results

Groundwater levels measured in the monitoring wells on May 23, 2017 were noted at depths ranging from 2.94 to 9.55 feet bgs. Groundwater samples were collected from monitoring wells MW-1, MW-3, MW-5 and MW-8. Monitoring well locations and analytical results are shown on **Figure 1**. MW-1 is located along the 3-21 Outfall flow path and MW-3 is located along the Alpha Outfall flow path. MW-5 is located east, and down-gradient of the main infiltration area. MW-8 is located in an inferred up-gradient direction of the Airport. Groundwater flow direction was not calculated for this event. Various studies have been conducted in support of the pending Stormwater Discharge Permit and each has concluded that the direction of flow for shallow groundwater across the site is generally northeasterly.

The downgradient monitoring wells MW-1, 3 and 5 detected concentrations of PFOA\PFOS at levels exceeding the screening level of 70 ng\L. The greatest concentrations are observed in samples collected from MW-3 and MW-1, respectively. These areas are subjected to stormwater collection and discharge from active portions of the Airport. The upgradient groundwater sample collected from MW-8 did not detect PFOA or PFOS at concentrations exceeding the screening levels. Analytical results are shown on **Table 1** and the laboratory analytical report is included in **Attachment A**.

Discussion

Perfluorinated chemicals are widespread and persistent in the environment. Potential sources of these chemicals include aviation-related products such as lubricants, hydraulic oils, detergents, firefighting agents and deicing compounds. It has been reported that the use of PROA/PFOS has been curtailed beginning in the early 2000s, however, there has been no known substitute developed for usage in aircraft hydraulic systems.

Given that the perfluorinated compounds are not easily degraded, their detection in the shallow groundwater downgradient of the airport suggests that historic releases of various aviation related fluids have occurred, and are not necessarily indicative of current practices.

Summary

The highest concentration of perfluorinated compounds was detected in the groundwater sample collected from MW-3 and this well is downgradient of the Alpha Outfall. Current and historic aviation practices within the capture zone of this outfall appear to have an impact on the outfall and shallow groundwater quality downgradient of the Airport.

The likely source for this impact is deicing fluids since deicing was and continues to be a standard practice during wintertime operations. Further assessment of current and past deicing

agents is advised to evaluate if this is a primary source of PFOS/PFOA.

Limitations

The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and conditions set forth in our Agreement, and with the AECOM proposal dated May 17, 2017. No other warranty, express or implied, is made.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the wells and sampling intervals may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination.

This report is for the exclusive use of Spokane International Airport and its representatives. No third party shall have the right to rely on AECOM's opinions rendered in connection with the services or in this document without our written consent and the third party's agreement to be bound to the same conditions and limitations as Spokane International Airport.

AECOM appreciates the opportunity to provide these services. Please contact the undersigned regarding any questions related to the information provided in this letter report.

Sincerely,

AECOM

Gary D. Panther, LG, LEG

Attachments:

Figure 1: Spokane International Airport PFOA\PFOS Study Area Table 1: Summary of Groundwater Analytical Results Attachment A: Analytical Results

040210_014/14/14/14/14

FIGURE 1

Table 1Summary of Groundwater Analytical ResultsPerfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)Spokane International Airport

Well ID	Sample Date	Depth to Water (feet bgs)	PFOA (ng/L)	PFOS (ng/L)
	Groundwater Scree	70	70	
MW-1	5/23/2017	5.93	130	130
MW-3	5/23/2017	3.48	330	93
MW-5	5/23/2017	2.94	110	140
MW-8	5/23/2017	9.55	1.4 U	9.5

Notes:

¹ Groundwater screening levels were obtained from EPA's "Fact Sheet, PFOA & PFOS Drinking Water Health Advisories," dated November 2016. Values in **bold** font indicate that the result reported meets or exceeds the groundwater screening level.

feet bgs - feet below ground surface

ng/L - nanogram per liter

PFOA - perfluorooctanoic acid

PFOS - perfluorooctane sulfonic acid

U - Compound was analyzed for but not detected above the reporting limit shown.

Samples analyzed by ALS Global Laboratories, Kelso, Washington.

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1705255

June 26, 2017

Gary Panther AECOM 528 E. Spokane Falls Boulevard, Suite 503 Spokane, WA 99202

RE: SIA PFOA-PFOS Sampling / TBD

Dear Gary,

Enclosed are the results of the sample(s) submitted to our laboratory May 24, 2017 For your reference, these analyses have been assigned our service request number **K1705255**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leaf Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLCMS

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 19

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	_
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification http://www.deq.state.ok.us/CSDnew/labcert.htm	605
Oklahoma DEQ		9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA
		1

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 19

ALS ENVIRONMENTAL

Client:AECOMProject:SIA PFOA-PFOS Sampling/TBDSample Matrix:Water

Service Request No.: Date Received: K1705255 05/24/17

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Four water samples were received for analysis at ALS Environmental on 05/24/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

No anomalies associated with the analysis of these samples were observed.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 19

							(elso,		7	7 S Phone	DF CUSTODY 9857 (360) 577-7222 / 800-694 alsglobal.com	001 5-7222 / FAX (36		SR#
Project Name SIA PFOA PFOS SAMO	Project Nu	Imber: TBD		Γ	14D						·····	7		-
Project Manager GARY PANT		······································		1	-		······	r						
Company AE Com				JERS										
Address S28 E. SPOKING Foll	KALVO AS	03 SPUKano WO G	19019	VTAIL										
Phone 4 -954-5090	email	PANTNER RAELON	m. wm		FOA									
	Sampler F	D. Pouther		NUMBER OF CONTAINERS	PFC/537M / PFOA	4	Qt	9	4	2	Remarks			
CLIENT SAMPLE ID	LABID	SAMPLING Date Time	Matrix											
1.MW-8		5-23-17 900	W	ч	Х									
2. MW-3	·	5.23.17 1000	W	2.	×									
3. mw-1		5.23.17 1100	ω	2	×									
4 mw - 5		5.23.17 1200	ω	2	X									
5.		· · ·												
6.														
7.														
8.														
9.														
10.										Τ]		
Report Requirements		ice Information										Circle which m	netals are to be analyzed	
I. Routine Report: Method Blank, Surrogate, as required	P.O.# Bill To:	AELom	_]									d Co Cr Cu	u Fe Po Mg Mn Mo Ni K Ag Na	-
🔏 II. Report Dup., MS, MSD	[— L						_		······································		Cu Fe Pb Mg Mn Mo Ni K Ag	
as required	Turnaro	und Requiremer	Sints	becial	Instr	uctio	ns/C	omn	nent	S:	*Indic	ate State Hy	vdrocarbon Procedure: AK CA WI	Northwest Other (Circle One)
III. CLP Like Summary (no raw data)	24	hr48 hr.												
IV. Data Validation Report	5 C	ndard												
V. EDD														
Relinquished By:		Requested Report Date Received By:		Reli	nqu	ishe	əd E	By:			Received	By:	Relinquished By:	Received By:
Signature	Skinature	min	Signa	iture						Sig	inature		Signature	Signature
GARY D. PANTALL	Printed Na	ne ICIANO/	1	ed Nar	ne						nted Name		Printed Name	Printed Name
Acron	Firm	ALY	Firm							Fin			Firm	Firm
Date/Time 5-23-17 1400	Date/Time	14117-1610	Date/	Time						[Da	te/Time		Date/Time	Date/Time

If present, were custody seals intact? N If present, were they signed and dated? Y Raw Corrected Corr. Thermometer Cooler/COC ID Tracking Number			on page 2.	in the table	crepancies i	e major dis	? Indice	•		-	•	
If present, were custody seals intact? N If present, were they signed and dated? Y Raw Corrected. Raw Corrected. Corrected. Corrected. Factor ID Cooler/COC ID Tracking Number 1.9 1.0 - - 0.3 380 122772-13099-400 0 - Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves		NA Č	Thawed				unbroke ere recei	(temperature ue samples v	od condition olicable, tis	eived in goo If apj	samples re	Were s
If present, were custody seals intact? N If present, were they signed and dated? Y Raw Corrected, Raw Corrected Corr. Thermometer ID Tracking Number				Sleeves	Dry Ice	is Wet I		Bubble Wraj	Baggies	~	-	
If present, were custody seals intact? N If present, were they signed and dated?	NA F	mber -10 ²	Tracking N	722		r Coel	ID				P Cooler Tem	oler Temp
Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered Samples were received in: (circle) Coler Box Envelope Other NA Were custody seals on coolers? NA Y N If yes, how many and where? NA			nd dated?	d where?	Other ow many and sent, were th	E nvelope If yes, h If pre	Box N N	5	ircle) s?	eived in: (c <u>ls</u> on cooler	oles were re custody se	Sampl Were

Page____of____

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 19

Analytical Report

Client:	AECOM	Service Request: K1705255
Project:	SIA PFOA-PFOS Sampling/TBD	Date Collected: 05/23/17 09:00
Sample Matrix:	Water	Date Received: 05/24/17 10:10
Sample Name:	MW-8	Units: ng/L
Lab Code:	K1705255-001	Basis: NA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	ND U	1.4	1	06/09/17 22:47	6/5/17	
Perfluorooctane sulfonic acid (PFOS)	9.5	3.6	1	06/09/17 22:47	6/5/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	93	13 - 142	06/09/17 22:47	
13C4-PFOS	79	11 - 131	06/09/17 22:47	

Analytical Report

Client:	AECOM	Service Request: K1705255
Project:	SIA PFOA-PFOS Sampling/TBD	Date Collected: 05/23/17 10:00
Sample Matrix:	Water	Date Received: 05/24/17 10:10
Sample Name: Lab Code:	MW-3 K1705255-002	Units: ng/L Basis: NA
Lab Coue:	K 170 <i>J</i> 2 <i>JJ</i> ⁻ 002	Dasis: INA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	330	1.4	1	06/09/17 23:18	6/5/17	
Perfluorooctane sulfonic acid (PFOS)	93	3.6	1	06/09/17 23:18	6/5/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	84	13 - 142	06/09/17 23:18	
13C4-PFOS	74	11 - 131	06/09/17 23:18	

Analytical Report

Client:	AECOM	Service Request:	K1705255
Project:	SIA PFOA-PFOS Sampling/TBD	Date Collected:	05/23/17 11:00
Sample Matrix:	Water	Date Received:	05/24/17 10:10
Sample Name: Lab Code:	MW-1 K1705255-003	Units: Basis:	0

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	130	1.4	1	06/09/17 23:29	6/5/17	
Perfluorooctane sulfonic acid (PFOS)	130	3.6	1	06/09/17 23:29	6/5/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	85	13 - 142	06/09/17 23:29	
13C4-PFOS	70	11 - 131	06/09/17 23:29	

Analytical Report

Client:	AECOM	Service Request: K1705255
Project:	SIA PFOA-PFOS Sampling/TBD	Date Collected: 05/23/17 12:00
Sample Matrix:	Water	Date Received: 05/24/17 10:10
Sample Name:	MW-5	Units: ng/L
Lab Code:	K1705255-004	Basis: NA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	110	1.4	1	06/09/17 23:39	6/5/17	
Perfluorooctane sulfonic acid (PFOS)	140	3.6	1	06/09/17 23:39	6/5/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	101	13 - 142	06/09/17 23:39	
13C4-PFOS	77	11 - 131	06/09/17 23:39	

		Analytical Report	
Client:	AECOM	Service Request: k	K1705255
Project:	SIA PFOA-PFOS Sampling/TBD	Date Collected: N	NA
Sample Matrix:	Water	Date Received: N	NA
Sample Name: Lab Code:	Method Blank KQ1707145-04	Units: n Basis: N	C

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	ND U	2.0	1	06/09/17 22:05	6/5/17	
Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	06/09/17 22:05	6/5/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	99	13 - 142	06/09/17 22:05	
13C4-PFOS	85	11 - 131	06/09/17 22:05	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:AECOMProject:SIA PFOA-PFOS Sampling/TBDSample Matrix:Water

Service Request: K1705255

SURROGATE RECOVERY SUMMARY

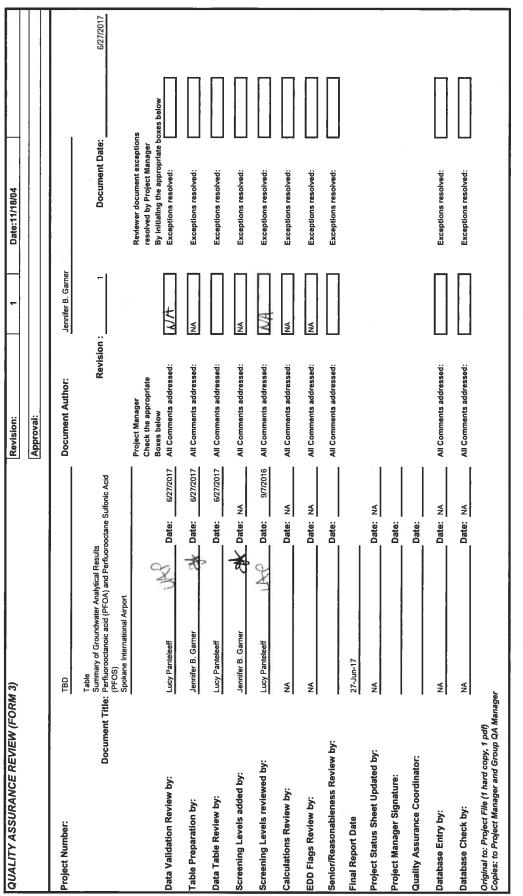
Analysis Method:	PFC/537M
Extraction Method:	EPA 3535A

		13C4-PFOA	13C4-PFOS	
Sample Name	Lab Code	13 - 142	11 - 131	
MW-8	K1705255-001	93	79	
MW-3	K1705255-002	84	74	
MW-1	K1705255-003	85	70	
MW-5	K1705255-004	101	77	
MW-8	KQ1707145-01	89	71	
MW-8	KQ1707145-02	94	76	
Lab Control Sample	KQ1707145-03	87	80	
Method Blank	KQ1707145-04	99	85	

QA/QC Report

Client: Project: Sample Matrix:	AECOM SIA PFOA-PFO Water	S Sampling/	TBD				Service Ro Date Colle Date Rece Date Anal	ected: eived:	K1705 05/23/ 05/24/ 06/9/1	17 17	
							Date Extr	acted:	06/5/1	7	
			Duplicat	te Matrix S _l	pike Sum	mary					
	Perfluorina	ated Sulfoni	c Acids an	d Perfluori	inated Ca	rboxylic A	Acids by H	PLC/MS			
Sample Name:	MW-8						1	Units:	ng/L		
Lab Code:	K1705255-001							Basis:	NA		
Analysis Method:	PFC/537M										
Prep Method:	EPA 3535A										
	Matrix SpikeDuplicate Matrix SpikeKQ1707145-01KQ1707145-02					-					
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Perfluorooctanoic aci	ND U	133	143	93	113	143	79	72-130	16	30	
Perfluorooctane sulfo	onic acid (PFOS)	9.5	130	133	91	139	133	98	74-135	7	30

Results flagged with an asterisk (*) indicate values outside control criteria.


Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	AECOM SIA PFOA-PFOS Sampling/TBD Water	Service Request: Date Analyzed: Date Extracted:	K1705255 06/09/17 06/05/17
	Lab Control S	ample Summary	
	Perfluorinated Sulfonic Acids and Perfl	orinated Carboxylic Acids by HPLC/M	S
Analysis Method:	PFC/537M	Units:	ng/L
Prep Method:	EPA 3535A	Basis:	NA
		Analysis Lot:	549217
		Lab Control Sample KQ1707145-03	

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorooctane sulfonic acid (PFOS)	172	186	93	74-135
Perfluorooctanoic acid (PFOA)	174	200	87	72-130

Notes: ALS Lab Group: K1705255

Page 1

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B.2

AECOM, 2017b. Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals.

December 12, 2017

Mr. Matt Breen Spokane International Airport 9000 West Airport Drive Spokane, Washington 99219

Re: Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals Spokane International Airport Spokane, Washington SIA Contract #17-43-9999-020-001-00 <u>AECOM Job No.:60557313</u>

Dear Mr. Breen:

Attached are the results and supporting documentation for the recent, limited groundwater monitoring event for the perfluorinated chemicals, Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS). This monitoring event was conducted per your request so that Spokane International Airport's (SIA) could ascertain if detectable levels of perfluorinated chemicals are present in shallow groundwater beneath the airport. Samples were collected from newly installed monitoring wells MW-13 and MW-14, and from existing well MW-5. MW-5 was added to the sampling program so as to provide a reference point when discussing analytical results.

Our scope of work for this project included the following tasks:

- Contracted and provided oversight for the installation of two additional monitoring wells with locations near the east property line of the Airport. Boring locations were screened for utilities by both public and private utility locate contractors. Monitoring wells were installed on November 2, 2017 by Geologic Drill, LLC, a Washington-licensed driller in accordance with applicable state regulations.
- Performed one limited groundwater monitoring and sampling event on November 8, 2017. Groundwater samples were collected from the two new downgradient monitoring wells MW-13 and MW-14 and from MW-5 (Figure 1).
- Groundwater samples were shipped to ALS Global Laboratories' (ALS) laboratory in Kelso, Washington for analysis. ALS is accredited by the Washington State Department of Ecology with the certification number C544. The samples were analyzed for PFOA and PFOS by USEPA Method 537M. Samples were submitted on a standard turnaround time of 15-business days. An AECOM project chemist reviewed the analytical data and no data usability issues were identified.
- Prepared this letter report presenting the results of the sampling event, compared the analytical results to national standards, and provided our conclusions and recommendations.

Monitoring Well Installation

Two groundwater monitoring wells were installed on November 2, 2017. The locations of the wells were approved prior to installation by SIA personnel. Utility clearance was conducted through the public One Call system, with specific boring locations cleared by Advance Underground Utility Locating (AUUL) prior to bringing the driller on site. Monitoring wells were installed using 2-inch diameter poly-vinyl chloride screen and casing and were finished with aboveground steel monuments and protective bollards. Monitoring well locations are shown on **Figure 1**. Boring logs and construction information are included in **Attachment A - Boring Logs**.

Groundwater Sampling

Depth to water in each well was measured to the nearest $1/100^{\text{th}}$ of a foot prior to sampling. Groundwater samples were collected from each well using a peristaltic pump. The new wells were purged for approximately one hour prior to measuring field parameters. Purging and sampling using low-flow sampling techniques where flow rates were generally about 0.3 to 0.5 liters per minute (l/min). The purge rate was adjusted to minimize the drawdown of groundwater in the wells during purging.

Field parameters were measured with a Horiba-U52 water quality meter. Parameters include pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Once field parameters stabilized within 10% from reading to reading for each parameter, laboratory-prepared sample containers were filled with water from the wells, sealed and placed on ice pending next-day transport to the laboratory.

Results

Groundwater levels measured in the monitoring wells on November 8, 2017 were noted at depths ranging from 6.90 to 10.00 feet bgs. Groundwater samples were collected from monitoring wells MW-5, MW-13 and MW-14. Monitoring well locations, depth to water and analytical results are shown on **Figure 1**.

MW-5 is an existing well and is located east, and down-gradient of the main infiltration area. MW-13 is located in an inferred down-gradient direction of MW-5. MW-13 is located in an area where drainages from 3-21 and Alpha Outfall's merge with a drainage located south of 3-21. This drainage captures flow from the southern-portion of the Airport which is serviced by Taxiway G and the associated Outfall.

MW-14 is located in what is inferred to be a system which is predominantly fed by flow from the Alpha Outfall. However, the hydrology is not well understood at this location and it is possible that some mixing with subsurface flow from 3-12 Outfall could be occurring.

Groundwater flow direction was not calculated for this event. Various studies have been conducted in support of the pending Stormwater Discharge Permit and each has concluded that the direction of flow for shallow groundwater across the site is generally northeasterly.

Each sample collected from the three monitoring wells had detections of PFOA\PFOS at levels

exceeding the screening level of 70 ng\L. The greatest concentrations are observed in samples collected from MW-14. The concentration of PFOA\PFOS observed in the sample collected from MW-13 was observed to be lower that the concentration observed in the sample collected from MW-5. This suggests that some mixing and/or dilution could be occurring as a result of inflow from the Taxiway G Outfall.

Each of these sample locations are subjected to stormwater collection and discharge from active portions of the Airport. As a result each sample contained concentrations of PFOA\PFOS at concentrations exceeding regulatory guidelines. Analytical results are shown on **Table 1** and the laboratory analytical report is included in **Attachment B – Analytical Results**.

Summary

The highest concentration of perfluorinated compounds was detected in the groundwater sample collected from MW-14. This well is predominantly downgradient of the 3-21 Outfall. Current and historic aviation practices within the capture zone of this outfall appear to have an impact on shallow groundwater quality downgradient of the Airport.

Limitations

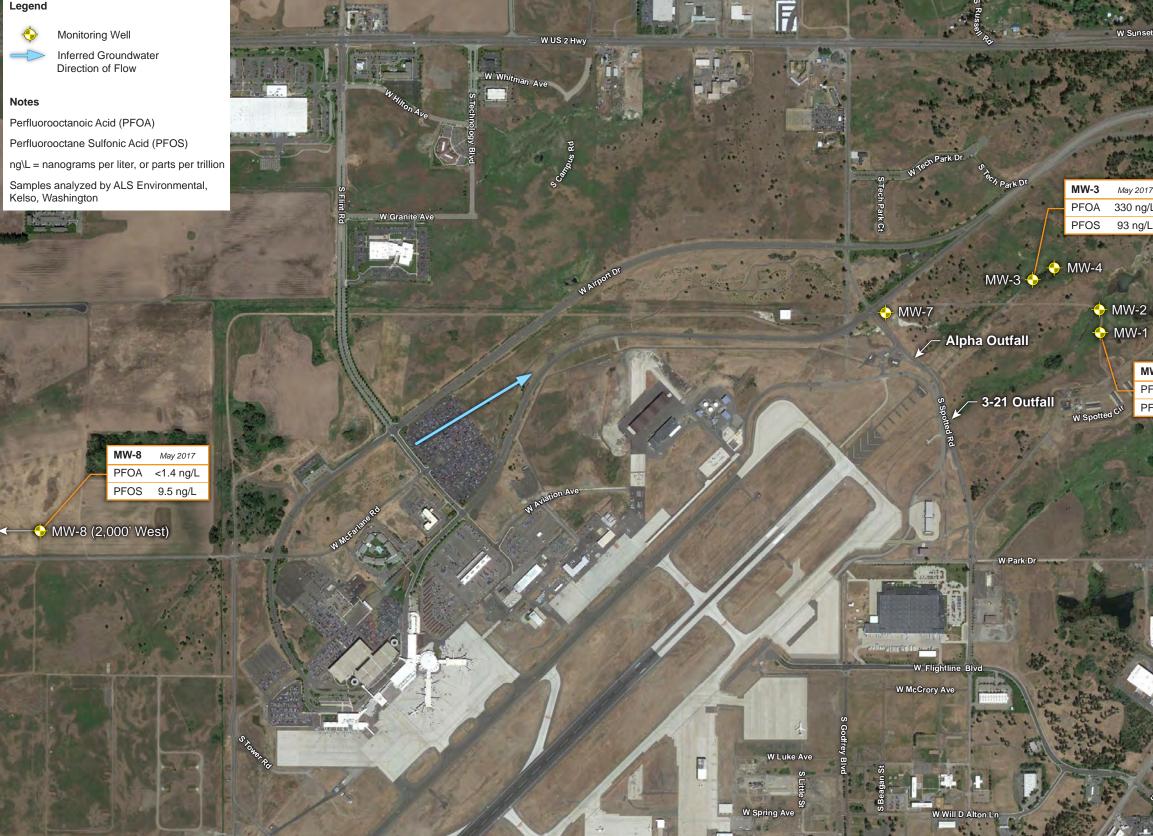
The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and conditions set forth in our Agreement, and with the AECOM proposal dated October 6, 2017. No other warranty, express or implied, is made.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the wells and sampling intervals may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination.

This report is for the exclusive use of Spokane International Airport and its representatives. No third party shall have the right to rely on AECOM's opinions rendered in connection with the services or in this document without our written consent and the third party's agreement to be bound to the same conditions and limitations as Spokane International Airport.

AECOM appreciates the opportunity to provide these services. Please contact the undersigned regarding any questions related to the information provided in this letter report.

Sincerely,


AECOM

Gary D. Panther, LG, LEG

Attachments:

Figure 1: Spokane International Airport PFOA\PFOS Study Area Table 1: Summary of Groundwater Analytical Results Attachment A: Boring Logs Attachment B: Analytical Results Figure 1: Spokane International Airport PFOA\PFOS Study Area

Source: Google Earth Pro, imagery dated 6/20/17

1,000 N 0 2,000 Scale in Feet

17 1/L	age Rd W Sunset	Hwy W 2 Hay		MW-14	MW-14 PFOA PFOS	Nov. 2017 350 ng/L 50 ng/L	
/L	Suma Sta		A CAR IN	1. 1.2	MW-1	3 Nov. 2017	
	🔶 MW-	6	7		PFOA	85 ng/L	
1	100.00				PFOS	72 ng/L	P 4.
		♦ MW-5		♦ MW-1	3		
/IW-1	May 2017		MW-5	May 2017	Nov. 2017		74
PFOA	130 ng/L		PFOA	110 ng/L	66 ng/L	S- 10	1 Share
FOS	130 ng/L	- 44	PFOS	140 ng/L	120 ng/L		
**			See and				
						WISSEN	
S Grove	W Rowa	na Ra			K		

Figure 1 Spokane International Airport **PFOA/PFOS Study Area**

> Spokane International Airport PFOA/PFOS Study Area Spokane, Washington

 Table 1:
 Summary of Groundwater Analytical Results

Table 1Summary of Groundwater Analytical ResultsPerfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)Spokane International Airport

Well ID	Sample Date	Depth to Water	PFOA (ng/L)	PFOS (ng/L)
	Groundwater Scree	70	70	
MW-5	11/8/2017	6.90	66	120
MW-13	11/8/2017	9.90	85	72
MW-14	11/8/2017	10.00	350	50

Notes:

¹Groundwater screening levels were obtained from EPA's "Fact Sheet, PFOA & PFOS Drinking Water Health Advisories," dated November 2016.

Values in **bold** font indicate that the result reported meets or exceeds the groundwater screening level.

Depth to water measured from top of casing.

ng/L - nanogram per liter

PFOA - perfluorooctanoic acid

PFOS - perfluorooctane sulfonic acid

Samples analyzed by ALS Global Laboratories, Kelso, Washington.

Attachment A: Boring Logs

A	CON	1							
	NEW	WELL			AECOM Project Number: 60557313	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-13 Well Tag: BKP-258		
MW-13 11-2-17			Equipment Type/ model #: Mobi	le G-2400	Location NAD 83				
a second s	10-11						47.6355 N, - 117.4977 W		
late and	10-13	-51			Auger type/diameter: 8-inch Hol	ow Stem	117.4577 W		
	2 - W. ()		The stress right		Contractor: Geologic Drill, LLC		-		
					Sampling method: 2-inch SPT		Sheet 1 of 1		
CERE LINE	des	YP			Hammer Weight: 140 Lbs	ammer Weight: 140 Lbs ree Fall: 30"			
	%	1	STR 2						
Blow Counts	ery	Depth in Feet	hic	aph	Location of Boring: Approx. 185 Surface conditions/ Topsoil Dep Material Description				
ow C	Recovery	Jept Fe	Graphic Log	CS II G	• •		Date 11/2/17		
B	Re	Ц	Grap Log	Soi US	Material Description				
2-2-6	100%	0		SM	Brown silty SAND with occasion	al gravel. Loose, Moist. With organics.			
		4		SM	Brown silty SAND, Medium-dens	e, Moist.			
5-6-6	100%	6							
		7	-	GM	Brown, silty GRAVEL with sand,	Medium-dense, Wet.			
		8 9		SP	Grey- brown SAND with trace sil	t, Medium-dense, Wet.			
10-13-37	76%	10							
	1070	11		RX	Basalt. Refusal at 11.5	feet bgs.			
		12				-			
		13			Well constructed with 6-feet of 2	0-slot screen.			
		14 15	-						
		16	-						
		17							
		18	-						
		19							
		20	-						
		21			Boring Completed at 11.5 feet B	GS. Groundwater encountered at 6.8 feet	bgs.		

A=	CON	1							
					AECOM Project Number: 60557313	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-14 Well Tag: BKP-259		
SIA NEW WELL MUU-14 11-2-17				Equipment Type/ model #: Mol	pile G-2400	Location NAD 83			
		-111/2					47.6385 N, - 117.4981 W		
	2-	2-3			Auger type/diameter: 8-inch Ho				
		ر جلس ر		N.	Contractor: Geologic Drill, LLC				
					Sampling method: 2-inch SPT		Sheet 1 of 1		
				TAN IN	Hammer Weight: 140 Lbs		Above-Grade Monument		
State of the second sec	<u></u>	4 1.25		1.6	Free Fall: 30"	ee Fall: 30" ocation of Boring: Approx. 300 feet W of east property line.			
unts	ry %	Depth in Feet	<u>.0</u>	/yd	Location of Boring: Approx. 30 Surface conditions/ Topsoil De		Time 1330		
Blow Counts	Recovery	spth Fee	hd	S G a	Surface conditions/ TopSoli De	pin: Grass-covered.	Date 11/2/17		
Blo	Rec	ă	Graphic Log	Soil Graph/ USCS	Material Description				
2-2-4		0	-	SM		nal gravel. Loose, Moist. With organics.			
3-4-5		4 5 6		SP	Grey- brown SAND with trace s	ilt, Loose, Moist.			
		7 8 9							
2-2-3		10 11		SP	Grey- brown SAND, Loose, Wet	L.			
		12	1						
]						
		13							
			4						
		14	1						
2-2-5		15		SP	Grey- brown SAND, Loose, Wet	i.			
		40							
		16	-		neaving sands-lost approximat	ely 2-feet of boring. Boring terminated, we	en set.		
		17	-						
			1						
		18]						
									
		19	4						
		20	-		Completed well depth is 14.5- for Well constructed with 10-feet o				
		20	-		wen constructed with 10-feet o				
		21	1						
			<u> </u>		Boring Completed at 16.5-feet I	3GS. Groundwater encountered at 7.0 feet	bgs.		

Attachment B: Analytical Results

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T** : +1 360 577 7222 **F** : +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1712199

November 30, 2017

Gary Panther AECOM 528 E. Spokane Falls Boulevard, Suite 503 Spokane, WA 99202

RE: SIA New Wells / 60557313

Dear Gary,

Enclosed are the results of the sample(s) submitted to our laboratory November 09, 2017 For your reference, these analyses have been assigned our service request number **K1712199**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leaf Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Chain of Custody Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLCMS

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 15

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 15

										8	31	F CUSTODY	001		SR# <u><u><u>K</u>/7/2/9</u>9 COC Setof COC#</u>
(ALS) Enuir					17 Sout	h 13th	Ave, ł	Kelso,	WA 9			(360) 577-7222 / 800-695 ilsglobal.com	-7222 / FAX (3	360) 636-1068	Page 1 of 1
Project Name STA NEW WE	LLS Project Ni	Imber: 605	573	13		140						***]		
Project Manager	LEX					Ļ									
Company AECOM					CONTAINERS								ĺ		
Moress 101 S. Green	1 RiDar	PR. Lib	nh Le	B 44	TAN										
Phone # .954-5090	l om off	(.PANTHG	•	m. Con		FOA									
Samplar Signature	Sampler P	rinted Name Y D. PAT	NTNE		NUMBER OF	PFC/537M / PFOA	1	5	e	4	5	Remarks			
CLIENT SAMPLE ID	LABID	SAMPL Date	_ING Time	Matrix											
1. MW-5		11-8-17	1300	W	4	×									
2. mw-13		11-8.17	1200	W	2	¥									
3. MW-14		11-8.17	1100	w	2	¥									
4															
5.					ļ										
6.											\square				
7.															
8.															
9.								\square			\square				
10.															
Report Requirements	P.O.# Bill To: 	hr.	an Mr	S	pecial	Dis	ssolve	ed Me	etais:	AI	As	Sb Ba Be B Ca	1 Co Cr (Cd Co Cr	i metals are to be analyzed Cu Fe Pb Mg Mn Mo Ni K Ag Cu Fe Pb Mg Mn Mo Ni K Hydrocarbon Procedure: AK CA	Ag Na Se Sr Tl Sn V Zn Hg
Relinguished By:		Requested Report D			Ral	inqu	lieh	od F	21/1		T	Received E	3	Relinquished By:	Received By:
	Ka	and	·		i (el	nqu	1011		-y ·			IVACEINAR F	- 3 -		necented by.
Signature forthe	Signature	GRAVE	ES.	Signa		·	<u> </u>					nature		Signature	Signature
Printed Name GAM D. PANTMENC	Printed Nai	me		Printe	ed Na	me					Pri	nted Name		Printed Name	Printed Name
Firm	Firm ///१/ Date/Time	7 09	30	Firm							Firr			Firm	Firm
Date/Time 11-8-17 /500	Daté/Tilne			Date/	Time						Dat	te/Time		Date/Time	Date/Time

ent 4	Aeeor	n		Cooler I	Receipt and]	Service R		و	1199	Y		
eived:	101-		Opened: 1	1911-	1Ву:	 Ch	Unloa	10	17	_By:	CG	
Samples	s were recei s were recei ustody seals	ived in: (cir		Fed Ex-	and the second se	D <i>HL PD.</i> <i>velope</i> If yes, how r	Other		d Delivered 2 Fron	1	NA	
-	ent, were cu			Č	•			ey signed and	dated?		B	N
Raw poter Temp	Corrected. Cooler Temp	Raw Terrip Blank 4 9	Corrected Temp Blank	Corr. Factor	Thermometer ID .39/	Cooler/C	INA		Tracking 1 3 8507		N/	Filed
Packin	ng material:	Insorts	Kagnia?	Bubble U	Trap Gel Pack	Wot Ico	Dry Ice	Sleeves				
	custody pap		~~~~			₫ ″une	Dry ICe	Jiceves .		NA	Ý	N
Were	samples rec	eived in go	od conditio	on (tempera								N
		Ifor	antionhla ti	· •	, ,				74	NA	(\mathfrak{V})	N
Were a	all sample l		-	issue sampl	es were receive ervation, etc.)?			e below. i ally Thawed	Thawed		® Ø	N
Did al	l sample lat	abels comp bels and tag	lete (i.e ana s agree wit	issue sampl alysis, pres h custody p	es were receive ervation, etc.)? papers? Indicat	d: Frozer e major discr	n Parti repancies	ally Thawed			~	N
Did al Were	l sample lat appropriate	abels comp bels and tag bottles/co	lete (i.e ana s agree wit ntainers and	issue sampl alysis, prese h custody p d volumes p	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the	d: Frozen e major discr tests indicate	n Parti repancies ed?	ally Thawed in the table o	n page 2.	NA NA NA	Ø Y Ø	N R N
Did al Were). Were	l sample lat appropriate e the pH-pre	abels comp bels and tag bottles/co eserved bot	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese h custody p d volumes p 10 GEN SOL	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th	d: Frozen e major discr tests indicate e appropriate	n Parti repancies ed?	ally Thawed in the table o	n page 2.	NA NA	Y Y Y	N N N N
Did al Were 0. Were 1. Were	l sample lat appropriate e the pH-pre	abels comp bels and tag bottles/co eserved bot s received b	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese h custody p d volumes p 10 GEN SOL	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the	d: Frozen e major discr tests indicate e appropriate	n Parti repancies ed?	ally Thawed in the table o	n page 2.	NA NA NA	Ø Y Ø	N R N
Did al Were 0. Were 1. Were 2. Was	l sample lat appropriate e the pH-pre e VOA vial C12/Res ne	abels comp bels and tag bottles/co eserved bot s received egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese h custody p d volumes p 10 GEN SOL	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed?	ally Thawed in the table o	n page 2. Ible below	NA NA NA	Y Y Y Y Y	N N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lab appropriate e the pH-pro e VOA vials C12/Res no Sample ID	abels comp bels and tag bottles/co eserved bot s received b	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese th custody p d volumes p to GEN SOI adspace? If	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	ally Thawed in the table o licate in the ta	n page 2. Ible below Identified i	NA NA NA NA	Y Y Y Y Y	N N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lat appropriate e the pH-pre e VOA vial C12/Res ne	abels comp bels and tag bottles/co eserved bot s received egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese th custody p d volumes p to GEN SOI adspace? If	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	ally Thawed in the table o	n page 2. Ible below Identified i	NA NA NA NA	Y Y Y Y Y	N N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lab appropriate e the pH-pro e VOA vials C12/Res no Sample ID	abels comp bels and tag bottles/co eserved bot s received egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i>	issue sampl alysis, prese th custody p d volumes p to GEN SOI adspace? If	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	ally Thawed in the table o licate in the ta	n page 2. Ible below Identified i	NA NA NA NA	Y Y Y Y Y	N N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lat appropriate e the pH-pro e VOA vials C12/Res no Sample ID MW - 1	abels comp bels and tag e bottles/co eserved bot s received v egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i> without hea	issue sampl alysis, prese h custody p d volumes n O GEN SOI adspace? Ir M V	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on $\sqrt{-14}$ Out of Head-	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	in the table of table o	n page 2. able below Identified	NA NA NA	Y Y Y Y Y	N N N N N
Did al Were D. Were 1. Were 2. Was	l sample lab appropriate e the pH-pro e VOA vials C12/Res no Sample ID	abels comp bels and tag e bottles/co eserved bot s received v egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i> without hea	issue sampl alysis, prese th custody p d volumes p to GEN SOI adspace? In MU	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on $\sqrt{-14}$	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	in the table of table o	n page 2. able below Identified	NA NA NA	Y Y Y Y Y	N N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lat appropriate e the pH-pro e VOA vials C12/Res no Sample ID MW - 1	abels comp bels and tag e bottles/co eserved bot s received v egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i> without hea	issue sampl alysis, prese h custody p d volumes n O GEN SOI adspace? Ir M V	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on $\sqrt{-14}$ Out of Head-	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	in the table of table o	n page 2. able below Identified	NA NA NA	Y Y Y Y Y	N N N N N
Did al Were 0. Were 1. Were 2. Was	l sample lat appropriate e the pH-pro e VOA vials C12/Res no Sample ID MW - 1	abels comp bels and tag e bottles/co eserved bot s received v egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i> without hea	issue sampl alysis, prese h custody p d volumes n O GEN SOI adspace? Ir M V	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on $\sqrt{-14}$ Out of Head-	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	in the table of table o	n page 2. able below Identified	NA NA NA	Y Y Y Y Y	N N N N N
Did al Were 0. Were 2. Was	l sample lat appropriate e the pH-pro e VOA vials C12/Res no Sample ID MW - 1	abels comp bels and tag e bottles/co eserved bot s received v egative?	lete (i.e and s agree wit ntainers and tles (<i>see SM</i> without hea	issue sampl alysis, prese h custody p d volumes n O GEN SOI adspace? Ir M V	es were receive ervation, etc.)? papers? <i>Indicat</i> received for the P) received at th adicate in the ta Sample ID on $\sqrt{-14}$ Out of Head-	d: Frozen e major discr tests indicate e appropriate ble below.	n Parti repancies ed? e pH? Ind	in the table of table o	n page 2. able below Identified	NA NA NA	Y Y Y Y Y	N N N N

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report **Client:** AECOM Service Request: K1712199 Date Collected: 11/08/17 13:00 **Project:** SIA New Wells/60557313 Sample Matrix: Water Date Received: 11/09/17 09:30 Sample Name: MW-5 Units: ng/L Lab Code: K1712199-001 Basis: NA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	66	1.8	1	11/22/17 22:27	11/15/17	
Perfluorooctane sulfonic acid (PFOS)	120	4.6	1	11/22/17 22:27	11/15/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	77	31 - 142	11/22/17 22:27	
13C4-PFOS	72	27 - 142	11/22/17 22:27	

Analytical Report **Client:** AECOM Service Request: K1712199 Date Collected: 11/08/17 12:00 **Project:** SIA New Wells/60557313 Sample Matrix: Water Date Received: 11/09/17 09:30 Sample Name: MW-13 Units: ng/L Lab Code: K1712199-002 Basis: NA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	85	1.8	1	11/22/17 22:37	11/15/17	
Perfluorooctane sulfonic acid (PFOS)	72	4.6	1	11/22/17 22:37	11/15/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	70	31 - 142	11/22/17 22:37	
13C4-PFOS	70	27 - 142	11/22/17 22:37	

Analytical Report **Client:** AECOM Service Request: K1712199 Date Collected: 11/08/17 11:00 **Project:** SIA New Wells/60557313 Sample Matrix: Water Date Received: 11/09/17 09:30 Sample Name: MW-14 Units: ng/L Lab Code: K1712199-003 Basis: NA

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	350	1.8	1	11/22/17 22:48	11/15/17	
Perfluorooctane sulfonic acid (PFOS)	50	4.5	1	11/22/17 22:48	11/15/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	65	31 - 142	11/22/17 22:48	
13C4-PFOS	71	27 - 142	11/22/17 22:48	

Analytical Report

Client:	AECOM	Service Request:	K1712199
Project:	SIA New Wells/60557313	Date Collected: 1	NA
Sample Matrix:	Water	Date Received: 1	NA
Sample Name: Lab Code:	Method Blank KQ1717064-03	Units: 1 Basis: 1	0

Analysis Method:	PFC/537M
Prep Method:	EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluorooctanoic acid (PFOA)	ND U	2.0	1	11/22/17 21:03	11/15/17	
Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	11/22/17 21:03	11/15/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	73	31 - 142	11/22/17 21:03	
13C4-PFOS	67	27 - 142	11/22/17 21:03	

QA/QC Report

Service Request: K1712199

Client:AECOMProject:SIA New Wells/60557313Sample Matrix:Water

SURROGATE RECOVERY SUMMARY

Analysis Method:	PFC/537M
Extraction Method:	EPA 3535A

		13C4-PFOA	13C4-PFOS	
Sample Name	Lab Code	31 - 142	27 - 142	
MW-5	K1712199-001	77	72	
MW-13	K1712199-002	70	70	
MW-14	K1712199-003	65	71	
Lab Control Sample	KQ1717064-01	72	69	
Duplicate Lab Control Sample	KQ1717064-02	69	65	
Method Blank	KQ1717064-03	73	67	

QA/QC Report

Client:	AECOM	Service Request:	K1712199
Project:	SIA New Wells/60557313	Date Analyzed:	11/22/17
Sample Matrix:	Water	Date Extracted:	11/15/17

Duplicate Lab Control Sample Summary

Analysis Method:	PFC/537M	Units:	ng/L
Prep Method:	EPA 3535A	Basis:	NA
		Analysis Lot:	571129

		Control Sam Q1717064-01	1	Dup	licate Lab C KQ1717(ıple		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Perfluorooctane sulfonic acid (PFOS)	138	155	89	145	155	94	29-162	5	30
Perfluorooctanoic acid (PFOA)	164	167	98	170	167	102	52-147	4	30

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B.2

SES, 2018. 2018 Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals.

September 10, 2018

Mr. Matt Breen Spokane International Airport 9000 West Airport Drive Spokane, Washington 99219

RE: Monitoring Well Installation and Groundwater Monitoring for Perfluorinated Chemicals Spokane International Airport Spokane, Washington SIA Contract #18-43-9999-028-001-00 <u>SES Project No.:0270-001</u>

Dear Mr. Breen:

Attached are the results and supporting documentation for the recent, limited groundwater monitoring event for the perfluorinated chemicals, Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS). This monitoring event was conducted per your request so that Spokane International Airport's (SIA) could ascertain if detectable levels of perfluorinated chemicals are present in shallow groundwater beneath the airport. Samples were collected from newly installed monitoring wells MW-15, MW-17 and MW-18. Monitoring well MW-16 was observed to be dry and was not sampled.

Our scope of work for this project included the following tasks:

- Contracted and provided oversight for the installation of additional monitoring wells with locations near the east property line of the Airport. Boring locations were screened for utilities by both public and private utility locate contractors. Monitoring wells were installed on July 30 and 31, 2018 by Geologic Drill, LLC, a Washingtonlicensed driller in accordance with applicable state regulations.
- Performed one limited groundwater monitoring and sampling event on August 6, 2018. Groundwater samples were collected from the three of the four new monitoring wells MW-15, MW-17 and MW-18. The locations of the wells are shown on Figure 1.
- Groundwater samples were shipped to ALS Global Laboratories' (ALS) laboratory in Kelso, Washington for analysis. ALS is accredited by the Washington State Department of Ecology with the certification number C544. The samples were analyzed for PFOA and PFOS by USEPA Method 537M. Samples were submitted on a standard turnaround time of 15–business days. SES reviewed the analytical data and no data usability issues were identified.
- Prepared this letter report presenting the results of the sampling event, compared the analytical results to national standards, and provided our conclusions and recommendations.

Monitoring Well Installation

Three groundwater monitoring wells (MW-16, MW-17 and MW-18) were installed on July 30 with MW-15 being installed on July 31, 2018. The locations of the wells were approved prior to installation by SIA personnel. Utility clearance was conducted through the public One Call system, with specific boring locations cleared by Advance Underground Utility Locating (AUUL) prior to bringing the driller on site. Monitoring wells were installed using 2-inch diameter polyvinyl chloride screen and casing and were finished with aboveground steel monuments and protective bollards.

MW-15 is located in an undeveloped area west of the former USAF Ammo Storage area. The well is located in an inferred cross-gradient location to the Airport.

MW-16 is located in an undeveloped area west of runway 3/21. The well is located in an inferred up-gradient location to the Airport.

MW-17 is located in an undeveloped area south of runway 3/21. The well is located in an inferred up-gradient location to the Airport.

MW-18 is located in an area which was part of the former Geiger Field. The well is located in an inferred up-gradient location to the Airport.

Groundwater flow direction was not calculated for this event. Various studies have been conducted in support of the pending Stormwater Discharge Permit and each has concluded that the direction of flow for shallow groundwater across the site is generally northeasterly.

Monitoring well locations are shown on **Figure 1**. Boring logs and well construction information are included in **Attachment A - Boring Logs**.

Groundwater Sampling

Depth to water in each well was measured to the nearest 1/100th of a foot prior to sampling. Groundwater samples were collected from each well using a peristaltic pump. The new wells were purged for approximately one hour prior to measuring field parameters. Purging and sampling using low-flow sampling techniques where flow rates were generally about 0.3 to 0.5 liters per minute (I/min). The purge rate was adjusted to minimize the drawdown of groundwater in the wells during purging.

Field parameters were measured with a Horiba-U52 water quality meter. Parameters include pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Once field parameters stabilized within 10% from reading to reading for each parameter, laboratory-prepared sample containers were filled with water from the wells, sealed and placed on ice. Samples were shipped next-day delivery to the laboratory the same day as collected.

Results

Groundwater levels were measured in the monitoring wells on August 6, 2018. Depth to water ranged from 10.32 to 15.52 feet bgs. Groundwater samples were collected from monitoring wells MW-15, MW-17 and MW-18. Monitoring well MW-16 was observed to be dry.

PFOA was not detected at a concentration exceeding the Method Reporting Limit in the sample collected from monitoring well MW-15. Only one sample (MW-18) collected from the three monitoring wells had detection of PFOS at a level exceeding the screening level of 70 ng\L.

Concentrations of PFOA/PFOS in the remaining samples did not exceed the 70 ng/L screening level.

Analytical results are shown on **Table 1** and the laboratory analytical report is included in **Attachment B – Analytical Results**.

Summary

The highest concentration of perfluorinated compounds was detected in the groundwater sample collected from MW-18. This well is located within the former Geiger Field area. Current and historic aviation practices appear to have impacted shallow groundwater quality in this portion of the Airport.

Limitations

The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and conditions set forth in our Agreement, and with the SES proposal dated July 2, 2018. No other warranty, express or implied, is made.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the wells and sampling intervals may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination.

This report is for the exclusive use of Spokane International Airport and its representatives. No third party shall have the right to rely on SES's opinions rendered in connection with the services or in this document without our written consent and the third party's agreement to be bound to the same conditions and limitations as Spokane International Airport.

SES appreciates the opportunity to provide these services. Please contact the undersigned regarding any questions related to the information provided in this letter report.

Sincerely,

Spokane Environmental Solutions, LLC.

Gary D. Panther, LG, LEG

Attachments:

Figure 1: Spokane International Airport Additional Site Monitoring Wells Table 1: Summary of Groundwater Analytical Results Attachment A: Boring Logs Attachment B: Analytical Results

Figures

Tables

 Table 1

 Summary of Groundwater Analytical Results

 Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)

 Spokane International Airport

		Depth to Water	PFOA	PFOS
Well ID	Sample Date		(ng/L)	(ng/L)
	Groundwater Scree	70	70	
MW-15	8/6/2018	10.32	<3.8	1.6
MW-16	8/6/2018	Dry		
MW-17	8/6/2018	15.52	6.2	3.9
MW-18	8/6/2018	10.56	72	22

Notes:

¹ Groundwater screening levels were obtained from EPA's "Fact Sheet, PFOA & PFOS Drinking Water Health Advisories," dated November 2016. Values in **bold** font indicate that the result reported meets or exceeds the groundwater screening level.

Depth to water measured from top of casing.

ng/L - nanogram per liter

PFOA - perfluorooctanoic acid

PFOS - perfluorooctane sulfonic acid

Samples analyzed by ALS Global Laboratories, Kelso, Washington.

Spokane Environmental Solutions, LLC

Attachment – A

Boring Logs

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-15 Well Tag: BKP-260
					Equipment Type/ model #: Mobile G-2	2400	Location NAD 83
					Auger type/diameter: 8-inch Hollow St	tem	47.622229 N, -117.552446 W
					Contractor: Geologic Drill, LLC		
					Sampling method: 2-inch SPT		Sheet 1 of 1
					Hammer Weight: 140 Lbs		Above-Grade
					Free Fall: 30"		Monument
nts	y %	.ш	ы	Ä	Location of Boring: West of SE Ammo		Time 800
Cou	ver	Depth in Feet	phi	Grag	Surface conditions/ Topsoil Depth: G	rass-covered.	Data 7/24/40
Blow Counts	Recovery %	Del	Graphic Log	Soil Graph/ USCS	Material Description		Date 7/31/18
	Ľ.	0		 GM		o Dry With organics	
2-2-4	80%	1		GIVI	Brown silty GRAVEL with sand. Loose	e, Dry. with organics.	
		2					
		3					
		4	и П				
3-10-9		5		GP	Grey- brown GRAVEL with trace silt, I	Loose, Moist.	
5-10-9	50%	6					
		7					
		8					
		9					
6-10-9	50%	10		GP	Grey- brown GRAVEL with trace silt, L	Loose, Wet.	
		11					
		12					
		13					
		14					
		16					
		17					
		18					
		19					
		20			Completed well depth is 12.0- feet bgs Well constructed with 5-feet of 20-slot		
		21			Boring Completed at 12-feet BGS. Gro	oundwater encountered at 10.0 feet	bgs.

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-16 Well Tag: BKP-263
					Equipment Type/ model #: Mobile G-24	400	Location NAD 83
					Auger type/diameter: 8-inch Hollow Ste	em	47.611527 N, -117.558968 W
					Contractor: Geologic Drill, LLC		
					Sampling method: 2-inch SPT		Sheet 1 of 1
					Hammer Weight: 140 Lbs		Above-Grade
			-		Free Fall: 30"		Monument
nts	у %	. <u>=</u>	U	ho /do	Location of Boring: East of S. Center R		Time 700
Blow Counts	lave	Depth in Feet	phi –	S Gra	Surface conditions/ Topsoil Depth: Gra	ass-covered.	Date 7/30/18
Blow	Recovery %	e e	Graphic Log	Soil	Location of Boring: East of S. Center R Surface conditions/ Topsoil Depth: Gra Material Description		
	-	0		SM	Brown silty SAND with occasional grav	vel Loose Moist With organics	
2-3-2	8%	-			Brown sitty of the with occusional gray	ten 20030, moist. Mith organics.	
		1					
			1				
		2]				
]				
		3					
		μΓ					
		4					
6-7-7	8%	5		SM	Grey- brown SAND with trace silt, Loos	se, Moist.	
		6	1				
		7	-				
		' -	-				
		8	+				
50/0	0%	Ŭ Ŭ		RX	Refusal on Basalt.		
		9					
			1				
		10	1				
			1				
		11	1				
]				
		12]				
			1				
		13	ļ				
			4				
		14	4				
			4				
		15	ł				
		16	4				
			1				
		17	1				
		" -	1				
		18	1				
		+	1				
		19	1				
			1		Completed well depth is 8.5- feet bgs.		
		20]		Well constructed with 2.5-feet of 20-slo	ot screen.	
		ļ[ļ				
		21	ł				
					Boring Completed at 8.5-feet BGS. Gro	oundwater was not encountered.	

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-17 Well Tag: BKP-262
							Location NAD 83
					Equipment Type/ model #: Mob		47.604917 N, -117.552602 W
					Auger type/diameter: 8-inch Hol	low Stem	
					Contractor: Geologic Drill, LLC		
					Sampling method: 2-inch SPT		Sheet 1 of 1
					Hammer Weight: 140 Lbs Free Fall: 30"		Above-Grade Monument
(0)	%			<u> </u>		Flectric Avenue	Time 1000
Blow Counts	Recovery %	Depth in Feet	ie	aph	Surface conditions/ Topsoil Dep		-
Ň	20	Fe	Graphic Log	S IG	· · ·		Date 7/30/18
ă	Re		Grag Log	Soil Graph/ USCS	Material Description		
		0		SM		al gravel. Loose, Moist. With organics.	
			1				
		1					
		2					
		3					
T		4					
3-3-4	80%	5		SP	Grey- brown SAND with trace si	t, Loose, Moist.	
0-0-4	80%						
		6					
		7					
		8					
		9					
11-11-19	70%	10		SP	Grey- brown SAND with occasio	nal gravel, Medium-dense, Moist.	
							
		11					
							
		12					
┝────┤		\vdash					
		13					
⊢───┤							
		14					
⊢───╂					Crow brown CAND with and	not arough Modium damas Mitt	
15-19-26	80%	15		SP	Grey- brown SAND with occasio	mai gravei, medium-dense, Wet.	
┢─────┣							
		16					
 							
		17					
┍───┤							
		18					
┌────╁							
		19					
┍───┤							
10-11-12	90%	20		SM	Brown silty SAND with occasion	-	
				1	Completed well depth is 25.0- fe	et ນຽຽ.	
└───┼		21			Well constructed with 10-feet of		

					SES Project Number: 0270-001	Spokane International Airports, New Wells PFOA-PFOS Assessment	Boring Number: MW-18 Well Tag: BKP-261
					Equipment Type/ model #: Mobile G-2		Location NAD 83
							47.619878 N, -117.517124 W
					Auger type/diameter: 8-inch Hollow St Contractor: Geologic Drill, LLC	tem	
					Sampling method: 2-inch SPT		Shoot 1 of 1
					Hammer Weight: 140 Lbs		Sheet 1 of 1
					Free Fall: 30"		Above-Grade Monument
ø	%			2		ric Avenue.	Time 1300
Blow Counts	Recovery %	Depth in Feet	Graphic Log	Soil Graph/ USCS	Surface conditions/ Topsoil Depth: Gr		-
ow C	Š	Fe	apl	CS			Date 7/30/18
ā	Re		Grap Log	Soi US	Material Description		
3-7-9	60%	0 1 2 3 4 5 6 7		GM	Brown silty Gravel with sand. Loose, I Grey- brown silty GRAVEL with sand,		
10-12-15	70%	8 9 10 11		SP Rx	Grey- brown SAND, Loose, Wet. Weathered Basalt. Refusal at 13.0 feet	Becomes weathered Basalt	
		12					
		13 14					
		15					
		16					
		17					
		18					
		19			Completed well depth is 12.0- feet bgs	s.	
		20			Well constructed with 5-feet of 20-slot		
		21			Boring Completed at 13.0-feet BGS. G	roundwater encountered at 10.0 fee	et bgs.

Attachment – B

Analytical Results

Ses SPOKANE ENVIRONMENTAL SOLITIONS

Gary Panther Spokane Environmental Solutions, LLC 3810 E. Boone Avenue, Ste 101 Spokane, WA 99202

Laboratory Results or: SIA

Dear Gary,

Enclosed are the results of the sample(s) submitted to our laboratory August 08, 2018 For your reference, these analyses have been assigned our service request number **K1**

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf ALSGlobal.com.

Respectfully submitted,

ALS Group SA, Corp. dba ALS Environmental

noe D. Dan

for Chris Leaf Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHO E 1 360 577 7222 FA 1 360 636 1068 ALS Group SA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:	Spokane Environmental Solutions, L	LC	Service Request:	K1807404
Project:	SIA		Date Received:	08/08/2018
Sample Matrix:	Water			
		CASE NARRATIVE		

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 08/08/2018. The samples were received in good condition and consistent with the accompanying chain of custody form except as noted on the cooler receipt and preservation form included in this report. Please note that these samples were received above the recommended cooler temperature of six degrees C. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organic LC:

No significant anomalies were noted with this analysis.

Approved by

noe D. Dan

Date 08/31/2018

SAMPLE DETECTIO S MMARY

CLIE TID: MW-1		Lab	D: K1	- 1		
Analyte	Results	Flag	MDL	MRL	nits	Method
Perfluorooctanoic acid (PFOA)	1.6			1.5	ng/L	PFC/537M
CLIE TID: MW-1		Lab	D: K1	-		
Analyte	Results	Flag	MDL	MRL	nits	Method
Perfluorooctanoic acid (PFOA)	3.9			1.5	ng/L	PFC/537M
Perfluorooctane sulfonic acid (PFOS)	6.2			3.8	ng/L	PFC/537M
CLIE TID: MW-1		Lab	D: K1	-		
Analyte	Results	Flag	MDL	MRL	nits	Method
Perfluorooctanoic acid (PFOA)	22			1.5	ng/L	PFC/537M
Perfluorooctane sulfonic acid (PFOS)	72			3.8	ng/L	PFC/537M

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERE CE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	<u>TIME</u>
K1807404-001	MW-15	8/6/2018	1500
K1807404-002	MW-17	8/6/2018	1230
K1807404-003	MW-18	8/6/2018	1100

ALS	anto	enta		131			e, Kelso, 1		9'	DF CUSTODY 1636 16360 635-7 ajsqlobal.com	001 222 / FAX (360)	\$36-1068	SR# SR# COC SetOF OF COC# Page 1 of 1		
Project Name SIA		Number: 270		-						aisgiobal.com			i uge i oi i		
Project Manager GARN PANTHER		0.10	U.S. I		1.	14D									
Company SES					ERS										
Address 3808 E. BOOME	SPONG	me, W.	997	17	CONTAINERS										
Prione # 954-5090 10	email	SPANNEEV Printed Name		wood in		PFOA									
Sampler Signature	Sampler GAV	m D	Pant	ribv.	NUMBER OF	PFC/637M / PF	- 0			Remarks					
CLIENT SAMPLE ID	LABID	SAMP Date	LING Time	Matrix					Ĩ						
1. WW-15	0.00	8.6.18	1500	La)	2	X			1						
2. MW-17		8 6 18	1230	W	2	X			1						
3. MW-18		8-6-18	1100	100	2	V		11							
4.		1		10						-					
5.	-				11										
6.	1	_		1	11										
7.			1	1		L., (*				N					
8.									1						
9.						Ed F		L 11							
10.				11		istin.		11							
I Report Requirements Invoice Information I Routine Report Method P.O.#R70·001 Blank, Surrogate, as required Bill To: II. Report Dup., MS, MSD as required Intraround Requirements III. CLP Like Summary (no raw data) 24 hr48 hr48 hr50 ay IV. Data Validation Report 35 and ard V. EDD Requirement Report Date				its Sp	Circle which motals are to be analyzed Total Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni Special Instructions/Comments: Indicate State Hydrocarbon Procedure: AK C							Fe Pb Mg Mn Mo Ni K Ag Fe Pb Mg Mn Mo Ni K A	K Ag Na Se Sr TI Sn V Zn Hg		
Relinguished By:	10	Received-E		T	Rel	inquis	hed B	y:		Received By	y:	Relinquished By:	Received By:		
Signature Conta	Signature	CAM	P	Signa	ture		_		S	gnature		Signature	Signature		
Frinted Name	Printed Na	Ane	>	Printe	d Na	me			P	rinted Name		Printed Name	Printed Name		
Gam D. Pantick SES	Firm	18/18	DID	Firm					Fi	m		Firm	Firm		
Date/Time 8-618 1600	Date/Time	a standard of	on por	Date/	Time				D	ate/Time		Date/Time	Date/Time		

Page 7 of 23

ALS	PC	CL	
Cooler Receipt and Preservation Form		<u> </u>	
VEC	74041		
	TE LEP D		
Received: $8/8$ Opened: $9/8/8$ By: Unloaded: 5	<u> ð // By:</u>		
I. Samples were received via? USPS Fed Ex UPS DHL PDX Courier	Hand Delivered		
2. Samples were received in: (circle) Cooler Box Envelope Other	A	NA	
3. Were <u>custody seals</u> on coolers? NA (Y) N If yes, how many and where?	IN front		
If present, were custody seals intact? OV N If present, were they signed a	and dated?	Ø	N
Raw Cooler Temp Corrected. Raw Temp Blank Corrected Temp Blank Corr. Thermometer ID Cooler/COC ID	Tracking Number	NA	Filed
13.4 13.5 13.2 13.3 +0.1 384 722	<u> 7 2443 340</u> 9	2	
	·		
↓			
Land have have here here here here here here here he		<u></u>	<u> </u>
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves	; 		
5. Were custody papers properly filled out (ink, signed, etc.)?	NA	Ľ	N
6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.	NA	Ċ	N
If applicable, tissue samples were received: Frozen Partially Thaw		<u> </u>	
7. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	Ŷ	N
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the tabl	e on page 2. NA	(Y)	N
9. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	Ğ	N
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the	e table below NA	Y	Ν
11. Were VOA vials received without headspace? Indicate in the table below.	(NA	Y	N
12. Was C12/Res negative?	NA	Y	N

Sample ID on Bottle	Sample ID on COC	Identified by:
	3 	·
	, 	
{		

Sample ID	Bottle Count Bottle Type	Out of Temp			pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
ALC		X							•	
										,
		1								
		1	[1			
]	1	1				11		1	1
	1	1	1	1		<u> </u>	1		1	1

121

Notes, Discrepancies, & Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	_
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Spokane Environmental Solutions, LLC	Service Ree
Project:	SIA/270-001	

Service Request: K1807404

Sample Name:	MW-15
Lab Code:	K1807404-001
Sample Matrix:	Water

Date Collected: 08/6/18 **Date Received:** 08/8/18

Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		NHILLIKER	CMULLER
Sample Name:	MW-17		Date Collected: 08/6/18
Lab Code:	K1807404-002		Date Received: 08/8/18
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By

PFC/537M

Sample Name:	MW-18
Lab Code:	K1807404-003
Sample Matrix:	Water

Analysis Method PFC/537M Extracted/Digested By NHILLIKER Analyzed By CMULLER

Date Collected: 08/6/18 **Date Received:** 08/8/18

Extracted/Digested By NHILLIKER **Analyzed By** CMULLER

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

High Performance Liquid Chromatography

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1807404
Project:	SIA/270-001	Date Collected: 08/06/18 15:00
Sample Matrix:	Water	Date Received: 08/08/18 10:10
Sample Name: Lab Code:	MW-15 K1807404-001	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	ND U	3.8	1	08/22/18 13:08	8/10/18	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	1.6	1.5	1	08/22/18 13:08	8/10/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	67	31 - 142	08/22/18 13:08	
13C4-PFOS	62	27 - 142	08/22/18 13:08	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1807404
Project:	SIA/270-001	Date Collected: 08/06/18 12:30
Sample Matrix:	Water	Date Received: 08/08/18 10:10
Sample Name: Lab Code:	MW-17 K1807404-002	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	6.2	3.8	1	08/22/18 13:18	8/10/18	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	3.9	1.5	1	08/22/18 13:18	8/10/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	67	31 - 142	08/22/18 13:18	
13C4-PFOS	65	27 - 142	08/22/18 13:18	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1807404
Project:	SIA/270-001	Date Collected: 08/06/18 11:00
Sample Matrix:	Water	Date Received: 08/08/18 10:10
Sample Name: Lab Code:	MW-18 K1807404-003	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	72	3.8	1	08/22/18 13:29	8/10/18	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	22	1.5	1	08/22/18 13:29	8/10/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	64	31 - 142	08/22/18 13:29	
13C4-PFOS	60	27 - 142	08/22/18 13:29	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

High Performance Liquid Chromatography

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Spokane Environmental Solutions, LLCProject:SIA/270-001Sample Matrix:Water

Service Request: K1807404

SURROGATE RECOVERY SUMMARY

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M
Extraction Method:	EPA 3535A

		13C4-PFOA	13C4-PFOS	
Sample Name	Lab Code	31-142	27-142	
MW-15	K1807404-001	67	62	
MW-17	K1807404-002	67	65	
MW-18	K1807404-003	64	60	
Method Blank	KQ1810863-03	85	75	
Lab Control Sample	KQ1810863-01	79	72	
Duplicate Lab Control Sample	KQ1810863-02	68	65	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1807404
Project:	SIA/270-001	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ1810863-03	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	08/22/18 10:52	8/10/18	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	ND U	2.0	1	08/22/18 10:52	8/10/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOA	85	31 - 142	08/22/18 10:52	
13C4-PFOS	75	27 - 142	08/22/18 10:52	

QA/QC Report

Client:	Spokane Environmental Solutions, LLC	Service Request:	K1807404
Project:	SIA/270-001	Date Analyzed:	08/22/18
Sample Matrix:	Water	Date Extracted:	08/10/18

Duplicate Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M	Units:	ng/L
Prep Method:	EPA 3535A	Basis:	NA
		Analysis Lot:	603453

		Control Sam Q1810863-01	-	Dup	licate Lab Co KQ18108				
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Perfluorooctane sulfonic acid (PFOS)	161	149	108	170	149	114	29-162	5	30
Perfluorooctanoic acid (PFOA)	134	160	84	174	160	109	52-147	26	30

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B

SES, 2019a. Limited Groundwater Assessment Park Drive Disposal Area.

3810 East Boone Avenue, Suite 101 Spokane, Washington 99202 509.688.5376

April 2, 2019

Mr. Matt Breen Spokane International Airport 9000 West Airport Drive Spokane, Washington 99219

RE: Limited Groundwater Assessment Park Drive Disposal Area Spokane International Airport Spokane, Washington SIA Contract #19-43-9999-006-001-00 SES Project No.:0270-002

Dear Mr. Breen:

Attached are the results and supporting documentation for the recent, limited groundwater monitoring event for perfluorinated chemicals and conventional chemistry contaminants of concern historically associated with this site. This monitoring event was conducted per your request to provide a snap shot of current shallow groundwater conditions beneath the Site. Samples were collected from historic groundwater monitoring wells installed in the 1990s on behalf of the Army Corps of Engineers.

SES understands that the site was formerly used as a borrow source, with an associated asphalt batch plant being located to the north. Later, portions of the site were used as a construction waste disposal site. The Site location is shown on **Figure 1**.

The latest Site Closure Summary was conducted by Herrera and Associates in 2003 which reported that the only contaminates of concern (COCs) exceeding the Model Toxics Control Act (MTCA) Method A cleanup criteria for unrestricted use in shallow groundwater were oil-range petroleum hydrocarbons and arsenic. Detections of TCE were also observed in samples collected from site wells but these detections were reported as 'minor and infrequent'. The last reported sampling of these wells was in 1999.

Our scope of work for this project included the following tasks:

- SES developed a Work Plan which dictated site sampling protocol. The Work plan included a sampling and analysis plan and a site-specific health and safety plan.
- Conducted one (1) groundwater sampling event on February 28, 2019. Groundwater samples were collected from the well pair from MW1-A and MW1-B.
- Groundwater samples were delivered to TestAmerica in Spokane, Washington for analysis of: diesel-range petroleum hydrocarbons by Northwest Method NWTPH-Dx, volatile organic compounds (VOCs) by EPA Method 8260, and total arsenic by EPA Methods 6000/7000. Sample containers collected for perfluorinated compounds were sent to ALS Global laboratory for analysis by EPA Method 537M. ALS is accredited by the Washington State Department of Ecology with the certification number C544. The samples were analyzed for PFOA and PFOS by USEPA Method 537M.

Samples were submitted on a standard turnaround time of 15–business days. SES reviewed the analytical data and no data usability issues were identified.

• Prepared this letter report presenting the results of the sampling event, compared the analytical results to national standards, and provided our conclusions and recommendations.

Groundwater Sampling

Depth to water in each well was measured to the nearest 1/100th of a foot prior to sampling.

Depth to water was measured at 14.35 feet below top of casing in MW-1A and 13.23 feet below top of casing in MW-1B.

Groundwater samples were collected from each well using a peristaltic pump. Purging and sampling using low-flow sampling techniques where flow rates were generally about 0.2 to 0.3 liters per minute (I/min). The purge rate was adjusted to minimize the drawdown of groundwater in the wells during purging.

Groundwater levels were measured in the monitoring wells on February 28, 2019. Depth to water ranged from 13.23 to 14.35 feet below top of casing in monitoring wells MW-1B and MW-1A, respectively.

The well pair are located on the south side of the Site, north of the current pond. MW-1A is the deepest of the wells and has an installed depth of 83 feet. The well is screened from 65 - 75 feet. SES was not able to advance the sample tubing to the screened interval due to an obstruction in the well casing at about 50 feet below top of casing. This obstruction is likely a joint in the casing that has loosened over time and creates a ridge which does not allow the tubing to pass as it hangs on the sidewall. The well is screened into a deeper, semi-confined water-bearing unit. The connection, if any with the water-bearing unit sampled from MW-1B is not fully understood.

Monitoring well MW-1B has an installed depth of 65.5 feet and has screened intervals between 2.5 - 32.5 feet and from 35 - 45 feet. SES placed the sample tubing intake at approximately 20 feet for this sample.

Field parameters were measured with a Horiba-U52 water quality meter. Parameters include pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Once field parameters stabilized within 10% from reading to reading for each parameter, laboratory-prepared sample containers were filled with water from the wells, sealed, and placed on ice. Samples were shipped next-day delivery to the laboratory the same day as collected.

Monitoring well locations are shown on **Figure 2**. Boring logs and well construction information is included in **Attachment A - Boring Logs**.

Analytical Results

PFOA and PFOS were not detected at a concentration exceeding the screening level of 70 ng\L in either sample.

Concentrations of BTEX, TCE and Dx did not exceed Method Reporting Limits (MRL) and/or MTCA Method A cleanup criteria in either sample.

Concentrations of total arsenic in groundwater samples did not exceed the MRL and/or MTCA Method A cleanup criteria in either sample.

Analytical results are shown on **Table 1 and Table 2.** Laboratory analytical reports are included in **Attachment B – Analytical Results**.

Summary

The highest concentration of perfluorinated compounds was detected in the groundwater sample collected from MW-1B. This well is screened near-surface and groundwater is likely interconnected to surface water in the adjacent pond. In general, contaminants of concern in both wells do not exceed applicable cleanup criteria.

Limitations

The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and conditions set forth in our Agreement, and with the revised SES proposal dated February 9, 2019. No other warranty, express or implied, is made.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the wells and sampling intervals may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination.

This report is for the exclusive use of Spokane International Airport and its representatives. No third party shall have the right to rely on SES's opinions rendered in connection with the services or in this document without our written consent and the third party's agreement to be bound to the same conditions and limitations as Spokane International Airport.

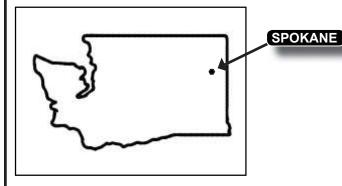
SES appreciates the opportunity to provide these services. Please contact the undersigned regarding any questions related to the information provided in this letter report.

Sincerely,

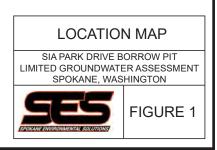
Spokane Environmental Solutions, LLC.

Gary D. Panther, LG, LEG


Attachments:


Figure 1: Location Map
Table 1: Summary of Groundwater Analytical Results - PFOA-PFOS
Table 2: Summary of Groundwater Analytical Results - Conventional Chemistry
Attachment A: Boring Logs
Attachment B: Analytical Results

Figures





Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. it is intended to assist in showing features discussed in an attached document.

Spokane Waste to Energy Plant

Waste to Energy Plant Stormwater Outfall

Notes:

A

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. it is intended to assist in showing features discussed in an attached document.

Source: Google Maps

LIMITED GROUNDWATER ASSESSMENT SPOKANE, WASHINGTON

Tables

Table 1

Summary of Groundwater Analytical Results - Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) Limited Groundwater Assessment Park Drive Disposal Area Spokane International Airport

			EPA-PFC	/537M
Well ID	Sample Date	Depth to Water	PFOA (ng/L)	PFOS (ng/L)
		Water	(19/2)	(19/2)
MW-1A	2/28/2019	14.35	10	5.9
MW-1B	2/28/2019	13.23	27	12
Groundw	ater Screening Lev	el (ng/L)	70	70

Notes:

¹ Groundwater screening levels were obtained from EPA's "Fact Sheet, PFOA & PFOS Drinking Water Health Advisories," dated November 2016. Values in **bold** font indicate that the result reported meets or exceeds the groundwater screening level.

Depth to water measured from top of casing.

ng/L - nanogram per liter

PFOA - perfluorooctanoic acid

PFOS - perfluorooctane sulfonic acid

Samples analyzed by ALS Global Laboratories, Kelso, Washington.

Table 2 Summary of Groundwater Analytical Results - Conventional Chemistry Limited Groundwater Assessment Park Drive Disposal Area Spokane International Airport

				NWT	EPA-6020B					
Sample ID	Date Sampled	Depth to Water	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Total Xylenes ug/L	TCE ug/L	DRO mg/L	RRO mg/L	Arsenic mg/L
MW-1A	2/28/2019	14.35	<0.40	<1.0	<1.0	<3.0	<1.0	<0.23	<0.39	<0.0050
MW-1B	2/28/2019	13.23	<0.4	<1.0	<1.0	<3.0	<1.0	<0.23	<0.38	<0.0050
MTCA Method A	Cleanup Level ^a		5	1000	700	1000	5	0.5	0.5	0.005

Notes:

a: MTCA = Model Toxics Control Act Method A cleanup level for unrestricted use. Method B value used where Method A value not established.

DRO = Diesel-Range Organics.

RRO = Residual-Range Organics.

BTEX = benzene, toluene, ethylbenzene, (total) xylenes.

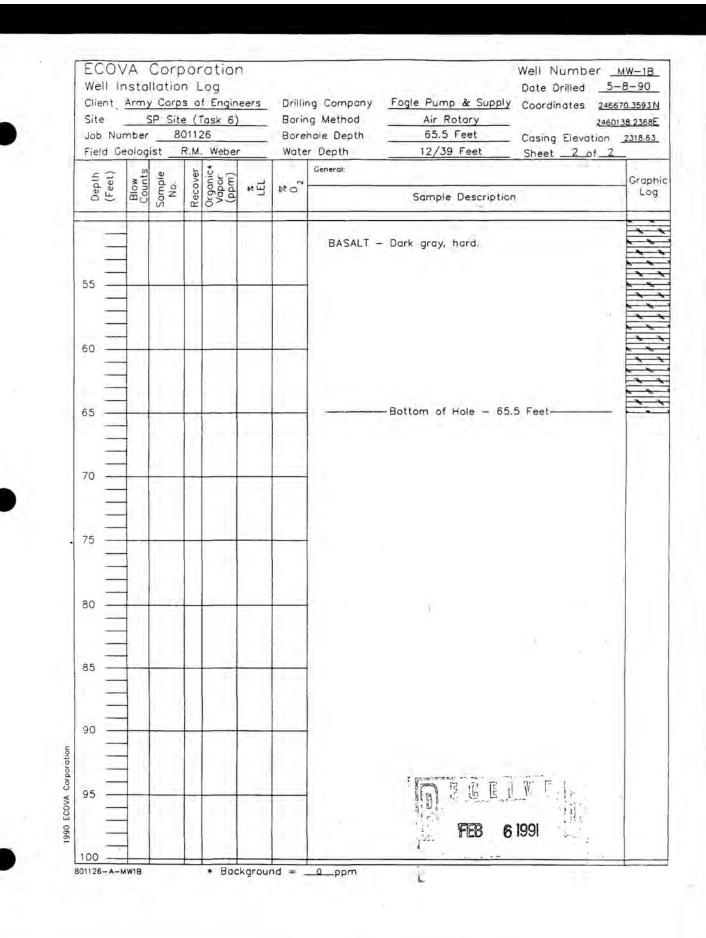
TCE = Trichloroethylene

ND = Analyte not detected at a concentration exceeding Method Reporting Limit (MRL). MRL is less than MTCA Method A Cleanup Criteria. BOLD = Exceedance of cleanup level.

Samples Analyzed by TestAmerica, Spokane, WA

SES SPOKANE ENVERONMENTAL SOLUTIONS Attachment – A

Boring Logs

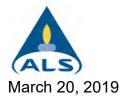

ECOVA Corporation Well Number MW-1A Well Installation Log 5-10-90 Date Drilled Client - Army Corps of Engineers Fogle Pump & Supply Coordinates Drilling Company 246670.5625 N Air Rotary Site SP Site (Task 6) Boring Method 2460128.4101E Job Number 801126 Borehole Depth 83 Feet Casing Elevation 2319.00 R.M. Field Geologist Weber Water Depth 13 Feet Sheet _____of_2 Organic• Vapor (ppm) General: 50 feet 6" steel cosing, pressure grout. Blow Counts Recover Sample No. Depth (Feet) Graphic RE 0% Log Sample Description SILTY SAND (SM) - Fine- to coorse-grained sand, brown, with black basalt cuttings, damp. 5 BASALT - Fresh, light gray, dry. 10 Basalt - Fresh, dark gray, dry. Hard drilling. Static water level at 13 Feet. BASALT - Alternating light and dark gray, dry. 15 20 Dry, hard drilling. 25 BASALT - Gray, with white and orange fragments, 30 easier drilling, damp. WEATHERED BASALT - Same as above with minor 35 clay, sond, and gravel. 40 Water yielding zone at 40 feet. 1990 ECOVA Corporation BASALT - Fractured, weathered, orange and white fragments, some clays, sand and gravel. 45 BASALT - Dark gray. i. 199 50 * Background = 801126-A-MWIA ____ppm

Well Ir Client Site Job Nur Field Ge	Army S mber	Corp P Site 80	s o e (1 011	f Engin Task 6)	-	Borin Borel	ng Compony ng Method hole Depth r Depth	Fogle Pump & Supply Air Rotary 83 Feet 13 Feet	Date Drilled <u>5-1</u> Coordinates <u>24667</u> <u>24601</u> Casing Elevation Sheet <u>2 of 2</u>	28.41
	TT		-		-	Hote		6" steel casing, pressure grout.		
Depth (Feet)	Blow	Sample. No.	Recover	Organic• Vapor (ppm)	× LEL	% 02		Sample Description		Gro
55							BASALT - cosing.	Black, no water, good	seal on conductor	A A A A A A A A A A A
60							BASALT -	Black, with dark gray (clay, domp.	
								CLAY WITH GRAVEL (GM	/GC) - Black,	000
• =							damp. Color char	nge to dork brown.		000
65 —						-				000
12								nge to brown with increa e fragments, predomina		000
70										000
-										000
75						_	white clas	D BASALT — Black—gray ts, soft drilling, damp. ding zone at 75 feet.	r, with orange and	
80							WEATHERE orange on	D BASALT — Block—gray d white fragments, soft	7, with abundant drilling.	
							BASALT -	Dark gray, hard.		1
								- Bottom of Hole - 83	Feet	-
85 —										
90										
		1.								
95 —			-		-			Park P in the	(***)	
-									1	
100								FEB 6	1991	

	WELL COMPLETION	MW-1A
		DRILLING TIMES: START <u>OBOD - 5/10/90</u> FINISH <u>1100 - 5/11/90</u> STANOBY OF DOWN TIME:
		METHOD OF DECON. PRIOR TO DRILLING:
× .	H I	DEVELOPMENT
(*)		METHOD OF DEVELOPMENT: DISPLACEMENT PUMPING @ 70 CYCLES/SEC
		PUMP TIME 0305 TO 0500 DATE 5/17/9
•	TOP OF CASING ELEVATION _2319.00'	TURBIDITY CLEAR MOD. TURBID AFTER SL TURBID TURBID
	A BORING DEPTH 83 FT.	ODOR IN WATER ?
	BORING DIAMETER <u>6</u> IN. B WELL DEPTH <u>79.3</u> FT. C WELL STICKUP <u>1</u> FT. D BLANK INTERVAL <u>66</u> FT.	WATER GROUND SURFACE STORAGE TANK DISCHARGED STORM SEWERS TANK TRUCK TO: DRUMS
	D BLANK INTERVAL <u>55</u> FT. BLANK DIAMETER <u>2</u> IN.	DEPTH OF WATER AFTER DEVELOPMENT: 6'
	E SCREEN INTERVAL <u>65-75'</u> FT. SCREEN DIAMETER <u>2</u> IN:	MATERIALS USED
	TYPE/SLOT SIZE 0.01 F SEDIMENT TRAP 5 FT. G ANNULAR SEAL 54 FT. MATERIAL <u>GROUT</u> H. BENTONITE SEAL <u>6</u> FT. I SANDPACK <u>18</u> FT.	4 1/2 SACKS of
tion	J BOTOM SEAL/PACK FT. MATERIAL: SAND	YARDS CEMENT - SAND USED CENTRALIZERS at 31, 59, AND 78.5" BGS
Corparation	K WELL COVER FT.	WELL COVER USED: Above Grade At Grade Other
	L STICKUP FT.	Lickable 1 (V
0 ECOVA	in sonession chang et.	
0651 @	NOT TO SCALE	FEB 6 1991

Client: Army Corps of Engineers Site SP Site (Task 6) Job Number 801126 Field Geologist R.M. Weber					Borin Boret	g Method <u>Air Rotary</u> 2460	Coordinates 245670.3593 2460138.2368 Casing Elevation 2318.6 Sheet <u>1</u> of 2	
Depth (Feet)	Blow Counts Somple No	Recover	Organic+ Vapor (ppm)	LEL	% 02	General: 6" steel casing to 5 feet. Sample Description	Grap	
5 10 15 20 25 30 35						 SILTY SAND (SM) - Fine- to coarse-grained sand, brown, black basalt gravel. 		
2						Water yielding zone at 30 feet.		
40						WEATHERED BASALT — Dark gray, orange, and white frogments, minor clay and sand, soft.		
45						TT P t ? .		

•



	DRILLING TIMES: START 1245_5/8/90 FINISH 1504_5/8/90 STANDBY OF DOWN TIME: I
	METHOD OF DECON. PRIOR TO DRILLING:
	DEVELOPMENT
	METHOD OF DEVELOPMENT: DISPLACEMENT PUMPING 60 CYCLES/SEC
	START TIME 0820 TO 0120 DATE 5/17/9
TOP OF CASING ELEVATION 2318.63	TURBIDITY CLEAR MOD. TURBID AFTER NOD. TURBID DEVELOPMENT:X SL. TURBID TURBID ODOR IN WATER ? NONE
BORING DIAMETER 5 IN. B WELL DEPTH 50.0 FT. C WELL STICKUP 0.5' FT. D BLANK INTERVAL 66 FT.	WATER CROUND SURFACE STORAGE TANK DISCHARGED STORM SEWERS TANK TRUCK TO: DRUMS
BLANK DIAMETER 2.5-32.5' IN. E SCREEN INTERVAL 35-45 FT.	DEPTH OF WATER AFTER DEVELOPMENT: 6 FEET
SCREEN DIAMETER IN. TYPE/SLOT SIZE 0.01	MATERIALS USED
F SEDIMENT TRAP 5 FT. G ANNULAR SEAL FT. MATERIAL: GROUT FT. H. BENTONITE SEAL FT. I SANDPACK FT. TYPE/SIZE: 20/40 FT. J BOTOM SEAL/PACK 2 FT.	9.5 SACKS of 20/40 SAND 4.5 SACKS of PREMIX CONCRETE GALLONS of GROUT USED GALLONS of GROUT USED #6 BENTONITE SACKS of BENTONITE PELLETS BUCKETS of BENTONITE PELLETS YARDS CEMENT - SAND USED 2 CENTRALIZERS of 15' AND 36' BGS
борона и страната страната и стр	WELL COVER USED: Above Grade At Grade Other
M CONDUCTOR CASING FT.	
M CONDUCTOR CASING FT.	10)- <u>-</u>

Attachment – B

Analytical Results

SES SPOKANE ENVIRONMENTAL SOLUTIONS

Service Request No:K1901784

Gary Panther Spokane Environmental Solutions, LLC 3810 E. Boone Avenue, Ste 101 Spokane, WA 99202

Laboratory Results for: Borrow Pit

Dear Gary,

Enclosed are the results of the sample(s) submitted to our laboratory March 01, 2019 For your reference, these analyses have been assigned our service request number **K1901784**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leaf Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:	Spokane Environmental Solutions, LLC
Project:	Borrow Pit
Sample Matrix:	Water

Service Request: K1901784 Date Received: 03/01/2019

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 03/01/2019. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Organic LC:

Method PFC/537M, 03/08/2019: Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by	Contract	Date	03/20/2019

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1A		Lab	ID: K1901	784-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorooctane sulfonic acid (PFOS)	10			4.2	ng/L	PFC/537M
Perfluorooctanoic acid (PFOA)	5.9			1.7	ng/L	PFC/537M
CLIENT ID: MW-1B		Lab	ID: K1901	784-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorooctane sulfonic acid (PFOS)	27			4.2	ng/L	PFC/537M

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K1901784-001	MW-1A	2/28/2019	1300
K1901784-002	MW-1B	2/28/2019	1400

A			13 ⁻						97	DF CUSTODY 7379 9 (360) 577-7222 / 800 695-7	001 222 / FAX (360) 6	538-1068	SR#_ <u>L</u> <u>GC</u> <u>178</u> <u>G</u> coc set coc#
Project Name Borrow Pit-	PANTHE MMENTAL AVE, STEI AVE, STEI Sampler	Solutions, c	59202	ITAINERS	74 4 PFC/537M / PFOA 14D		30, WA			Remarks	222 / FAX (360) 6	38-1068	Page 1 of 1
, , ,						+							
0. Report Requirements X. I. Routine Report: Method Blank, Surrogate, as required II. Report Dup, MS, MSD as required III. CLP Like Summary (no raw data) IV. Data Validation Report V. EDD	P.O.# <u>o</u> Bill To: <u>SelUNION</u> ATIM: Turnard		- 5	pecial	Dis		Metals	s: Al	As	ib Ba Be B Ca Cd Sb Ba Be B Ca C	Ca Cr Cu r d Ca Cr Cu		Na Se Sr Ti Sn V Zn Hg Ag Na Se Sr Ti Sn V Zn Hg Wi Northwest Other(Circle One)
Relinquished By:	Signature	Received By	Signa		Inqu	ished	d By:		S	Received By		Relinquished By: Signature	Received By: Signature
Med Name mey D. Jantick	Printed Na ALS		i lin	ed Na	me					rinted Name		Printed Name	Printed Name
111 SES ILC ate/Time 2-28-19 1600	Firm 3 /-/ Date/Time	9_1000	Firm Date/	Time	-			-		rm ate/Time		Firm Date/Time	Firm Date/Time

Page 7 of 22

ALS	5)									PC_	(L	
				Cooler H	Receipt and H	Preservation F	'orm		<i>.</i>			_
Client ~	STOKAL	IC EN	Vidaunon	star (Salasmands	Service Reque	est K19	D/	784			
Received:	3-1-1	7	Opened:	3-1-		- lan -	loaded:_	3-	<u>/-/9</u> E	sy:0	52	
1. Sample	s were recei	ived via?	USPS	FedEx	UPS L	OHL PDX	Courier	Han	d Delivered			
2. Sample	s were rece	ived in: (ci	rcle) 📢	ooler	Box Env	elope Othe	r			1	VA	
3. Were <u>c</u>	ustody seals	s on coolers	s?	NA (Ŷ) N I	f yes, how many	and where	?	TOP	Flo	NT-	
If prese	ent, were cu	stody seals	intact?	Ì	N	If present, were	e they sign	ned and	lated?	C	Ŷ	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	NA		Tracking Nu	mber	NA	Filed
0.0	-0,(5.8	5.7	-Ocl	371	97379	4	808	3227	9050		
	<u> </u>	 										
 			{ 		· · · · · · · · · · · · · · · · · · ·	<u> </u>						<u> </u>
	 	{	 		 	<u> </u>						<u> </u>
4 D. 1.	1									·		<u> </u>
	-	· · ·			-	Wet Ice Dry	Ice Sle	eves				
			ly filled out	• • -						NA	$\underline{\mathbf{x}}$	N
6. Were	samples rec	-		· -	ture, unbroken)? es were received	Indicate in the in the in the interview of the second second second second second second second second second s	table belo [.] Partially Ti		Thawed	NA	Ŷ	Ν
7. Were	all sample la	-		•	rvation, etc.)?	. rrozen r	arnany 1	питеа	1 nuweu	NA	$\widehat{\mathbf{W}}$	N
						major discrepanc	ies in the	table on	page 2.	NA	(Ý)	N
9. Were	appropriate	e bottles/co	ntainers and	volumes r	eceived for the t	ests indicated?				NA	Ŷ	N
10. Were	e the pH-pro	eserved bot	tles (see SM	O GEN SOP) received at the	appropriate pH?	Indicate i	n the ta	ble below	(NA)	Y	N
11. Wer	e VOA vial	s received v	without head	lspace? In	dicate in the tab	le below.				NA	Y	N
12. Was	C12/Res no	egative?								NA	Y	N
[· · · · · · · ·	·							\bigcirc]
	Sample ID	on Bottle			Sample ID on C	oc			Identified by:		· · · · · · · · · · · · · · · · · · · ·	<u> </u>
		<u> </u>			<u>مى مەرىمە م</u>					- Manager 1	. <u></u>	

Sample ID	Out of Temp		Broke	рH	Reagent	Volume added	Reagent Lot Number	Initials	Time
	 ļ								
	 Į	ļ							
	<u> </u>	L			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		L							
		T							

Notes, Discrepancies, & Resolutions:

www.withing.uktorecentrations.com

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:Spokane Environmental Solutions, LLCProject:Borrow Pit/0270-003

Service Request: K1901784

Sample Name:MW-1ALab Code:K1901784-001Sample Matrix:Water

Date Collected: 02/28/19 **Date Received:** 03/1/19

Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		NHILLIKER	LDOMREIS
Sample Name:	MW-1B		Date Collected: 02/28/19
Lab Code:	K1901784-002		Date Received: 03/1/19
Sample Matrix:	Water		

Analysis Method	
PFC/537M	

Extracted/Digested By NHILLIKER Analyzed By LDOMREIS

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

High Performance Liquid Chromatography

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1901784
Project:	Borrow Pit/0270-003	Date Collected: 02/28/19 13:00
Sample Matrix:	Water	Date Received: 03/01/19 10:00
Sample Name: Lab Code:	MW-1A K1901784-001	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:PFC/537MPrep Method:EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	10	4.2	1	03/08/19 00:26	3/5/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	5.9	1.7	1	03/08/19 00:26	3/5/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	117	25 - 121	03/08/19 00:26	
13C4-PFOA	97	22 - 130	03/08/19 00:26	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1901784
Project:	Borrow Pit/0270-003	Date Collected: 02/28/19 14:00
Sample Matrix:	Water	Date Received: 03/01/19 10:00
Sample Name: Lab Code:	MW-1B K1901784-002	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:PFC/537MPrep Method:EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	27	4.2	1	03/08/19 00:37	3/5/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	12	1.7	1	03/08/19 00:37	3/5/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	103	25 - 121	03/08/19 00:37	
13C4-PFOA	92	22 - 130	03/08/19 00:37	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

High Performance Liquid Chromatography

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:Spokane Environmental Solutions, LLCProject:Borrow Pit/0270-003Sample Matrix:Water

Service Request: K1901784

SURROGATE RECOVERY SUMMARY

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M
Extraction Method:	EPA 3535A

		13C4-PFOS	13C4-PFOA	
Sample Name	Lab Code	25-121	22-130	
MW-1A	K1901784-001	117	97	
MW-1B	K1901784-002	103	92	
Method Blank	KQ1902759-03	101	90	
Lab Control Sample	KQ1902759-01	107	82	
Duplicate Lab Control Sample	KQ1902759-02	105	87	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1901784
Project:	Borrow Pit/0270-003	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ1902759-03	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:PFC/537MPrep Method:EPA 3535A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	03/07/19 21:07	3/5/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	ND U	2.0	1	03/07/19 21:07	3/5/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	101	25 - 121	03/07/19 21:07	
13C4-PFOA	90	22 - 130	03/07/19 21:07	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:	Spokane Environmental Solutions, LLC	Service Request:	K1901784
Project:	Borrow Pit/0270-003	Date Analyzed:	03/07/19
Sample Matrix:	Water	Date Extracted:	03/05/19

Duplicate Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M		Units:	ng/L
Prep Method:	EPA 3535A		Basis:	NA
			Analysis Lot:	627545
		Lab Control Sample KQ1902759-01	Duplicate Lab Control Sample KQ1902759-02	
		S-siles		Daa

	Spike				Spike			% Rec	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Perfluorooctane sulfonic acid (PFOS)	28.2	29.7	95	24.7	29.7	83	71-139	13	30
Perfluorooctanoic acid (PFOA)	31.9	32.0	100	29.2	32.0	91	74-146	9	30

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: 590-10497-1

Client Project/Site: Borrow Pit/0207-003 Revision: 1

For:

Spokane Environmental Solutions LLC 3810 E. Boone Avenue Suite #101 Spokane, Washington 99202

Attn: Gary Panther


Cardie Arrington

Authorized for release by: 4/2/2019 1:39:29 PM Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

Expert

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
Chronicle	11
Certification Summary	12
Method Summary	13
Chain of Custody	14
Receipt Checklists	16

Job ID: 590-10497-1

Laboratory: TestAmerica Spokane

Narrative

Report Revision 04/01/2019

Per the client's request Trichloroethene data was added to the final report.

Receipt

The samples were received on 2/28/2019 4:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.0° C.

Receipt Exceptions

A trip blank was submitted for analysis with these samples; however, it was not listed on the Chain of Custody (COC). The trip blank has been placed on hold.

One of two voa vial containers for the following sample was received broken or leaking: Trip Blank (590-10497-3). Sufficient volume was received to continue with analysis.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Spokane Environmental Solutions LLC Project/Site: Borrow Pit/0207-003 TestAmerica Job ID: 590-10497-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
590-10497-1	MW-1A	Water	02/28/19 13:00 02/28/19 16:45
590-10497-2	MW-1B	Water	02/28/19 14:00 02/28/19 16:45

Definitions/Glossary

Client: Spokane Environmental Solutions LLC Project/Site: Borrow Pit/0207-003

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	A
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	.
CNF	Contains No Free Liquid	6
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	δ
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	12
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
DDD		

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Lab Sample ID: 590-10497-1

Matrix: Water

5 6 7

Client Sample ID: MW-1A	
Date Collected: 02/28/19 13:00	
Date Received: 02/28/19 16:45	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40		ug/L			03/05/19 21:35	1
Ethylbenzene	ND		1.0		ug/L			03/05/19 21:35	1
m,p-Xylene	ND		2.0		ug/L			03/05/19 21:35	1
o-Xylene	ND		1.0		ug/L			03/05/19 21:35	1
Toluene	ND		1.0		ug/L			03/05/19 21:35	1
Xylenes, Total	ND		3.0		ug/L			03/05/19 21:35	1
Trichloroethene	ND		1.0		ug/L			03/05/19 21:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 125					03/05/19 21:35	1
4-Bromofluorobenzene (Surr)	98		69 - 120					03/05/19 21:35	1
Dibromofluoromethane (Surr)	103		80 - 120					03/05/19 21:35	1
Toluene-d8 (Surr)	103		80 - 120					03/05/19 21:35	1
		olatile Pet Qualifier	roleum Prod RL	u <mark>cts (G(</mark> MDL		D	Prepared	Analyzed	Dil Fac
Analyte Diesel Range Organics (DRO)						D	Prepared 03/01/19 11:41	Analyzed 03/04/19 17:07	Dil Fac
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO)	Result		RL		Únit	D	•	03/04/19 17:07	Dil Fac 1
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36)	ResultND	Qualifier	RL 0.23		Unit mg/L	<u>D</u>	03/01/19 11:41	03/04/19 17:07	Dil Fac 1 1 Dil Fac
(C10-C25)	ResultND	Qualifier	RL 0.23		Unit mg/L	<u>D</u>	03/01/19 11:41 03/01/19 11:41	03/04/19 17:07 03/04/19 17:07	1
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate	Result ND ND %Recovery	Qualifier	RL 0.23 0.39 <i>Limits</i>		Unit mg/L	<u>D</u>	03/01/19 11:41 03/01/19 11:41 <i>Prepared</i>	03/04/19 17:07 03/04/19 17:07 Analyzed 03/04/19 17:07	1
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62 Method: 6020B - Metals (ICF	Result ND ND %Recovery 89 80 P/MS) - Total F	Qualifier Qualifier	RL 0.23 0.39 <u>Limits</u> 50 - 150 50 - 150	MDL	Unit mg/L mg/L	=	03/01/19 11:41 03/01/19 11:41 Prepared 03/01/19 11:41 03/01/19 11:41	03/04/19 17:07 03/04/19 17:07 Analyzed 03/04/19 17:07 03/04/19 17:07	1 1 Dil Fac 1 1
Analyte Diesel Range Organics (DRO) (C10-C25) Residual Range Organics (RRO) (C25-C36) Surrogate o-Terphenyl n-Triacontane-d62	Result ND ND %Recovery 89 80 P/MS) - Total F	Qualifier Qualifier	RL 0.23 0.39 Limits 50 - 150 50 - 150		Unit mg/L mg/L	D	03/01/19 11:41 03/01/19 11:41 Prepared 03/01/19 11:41	03/04/19 17:07 03/04/19 17:07 Analyzed 03/04/19 17:07	1 1 Dil Fac 1

Client Sample ID: MW-1B Date Collected: 02/28/19 14:00 Date Received: 02/28/19 16:45

Lab Sample ID: 590-10497-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40		ug/L			03/05/19 21:56	1
Ethylbenzene	ND		1.0		ug/L			03/05/19 21:56	1
m,p-Xylene	ND		2.0		ug/L			03/05/19 21:56	1
o-Xylene	ND		1.0		ug/L			03/05/19 21:56	1
Toluene	ND		1.0		ug/L			03/05/19 21:56	1
Xylenes, Total	ND		3.0		ug/L			03/05/19 21:56	1
Trichloroethene	ND		1.0		ug/L			03/05/19 21:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 125					03/05/19 21:56	1
4-Bromofluorobenzene (Surr)	104		69 - 120					03/05/19 21:56	1
Dibromofluoromethane (Surr)	103		80 - 120					03/05/19 21:56	1
Toluene-d8 (Surr)	104		80 - 120					03/05/19 21:56	1

Lab Sample ID: 590-10497-2 er

Date Collected: 02/28/19 14:00 Date Received: 02/28/19 16:45

Client Sample ID: MW-1B

Matrix:	Wate
---------	------

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.23		mg/L		03/01/19 11:41	03/04/19 17:27	1
Residual Range Organics (RRO) (C25-C36)	ND		0.38		mg/L		03/01/19 11:41	03/04/19 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87		50 - 150				03/01/19 11:41	03/04/19 17:27	1
n-Triacontane-d62	77		50 - 150				03/01/19 11:41	03/04/19 17:27	1
Method: 6020B - Metals (ICF	۶/MS) - Total F	Recoverab	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-									

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-21195/5 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5

7

Analysis Batch: 21195 MB MB

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND	0.40	ug/L			03/05/19 19:30	1	
Ethylbenzene	ND	1.0	ug/L			03/05/19 19:30	1	1
m,p-Xylene	ND	2.0	ug/L			03/05/19 19:30	1	
o-Xylene	ND	1.0	ug/L			03/05/19 19:30	1	í
Toluene	ND	1.0	ug/L			03/05/19 19:30	1	
Xylenes, Total	ND	3.0	ug/L			03/05/19 19:30	1	í
Trichloroethene	ND	1.0	ug/L			03/05/19 19:30	1	
	МВ	МВ						

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	101	70 - 125		03/05/19 19:30	1	
4-Bromofluorobenzene (Surr)	103	69 - 120		03/05/19 19:30	1	
Dibromofluoromethane (Surr)	99	80 - 120		03/05/19 19:30	1	
Toluene-d8 (Surr)	103	80 - 120		03/05/19 19:30	1	

Lab Sample ID: LCS 590-21195/1003 Matrix: Water Analysis Batch: 21195

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	10.6		ug/L		106	80 - 120	
Ethylbenzene	10.0	10.4		ug/L		104	80 - 120	
m,p-Xylene	10.0	10.7		ug/L		107	80 - 120	
o-Xylene	10.0	10.6		ug/L		106	80 - 120	
Toluene	10.0	10.4		ug/L		104	80 - 123	
Trichloroethene	10.0	10.7		ug/L		107	75 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		70 - 125
4-Bromofluorobenzene (Surr)	98		69 - 120
Dibromofluoromethane (Surr)	101		80 - 120
Toluene-d8 (Surr)	97		80 - 120

Lab Sample ID: LCSD 590-21195/6 Matrix: Water Analysis Batch: 21195

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	11.1		ug/L		111	80 - 120	4	25
Ethylbenzene	10.0	10.7		ug/L		107	80 - 120	3	25
m,p-Xylene	10.0	10.9		ug/L		109	80 - 120	2	25
o-Xylene	10.0	10.8		ug/L		108	80 - 120	1	25
Toluene	10.0	10.8		ug/L		108	80 - 123	4	25
Trichloroethene	10.0	10.8		ug/L		108	75 - 129	1	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 125
4-Bromofluorobenzene (Surr)	99		69 - 120

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-21195/6

Matrix: Water

n-Triacontane-d62

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

1 2 3 4 5 6 7 8 9

Analysis Batch: 21195												гер тур	e. 10	
Analysis Batch. 21195														
	LCSD I													
Surrogate	%Recovery	Qua	lifier	Limits										
Dibromofluoromethane (Surr)	102			80 - 120										
Toluene-d8 (Surr)	97			80 - 120										
Method: NWTPH-Dx - N	Northwest -	- S	emi-Vo	latile Petr	oleun	n Pi	rodu	icts (GC)				
Lab Sample ID: MB 590-21	144/1-A									Clie	ent Samp	ole ID: Me	thod	Blank
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 21158												Prep B	atch:	21144
		MB												
Analyte			Qualifier	RL		MDL	Unit		D		repared	Analyz		Dil Fac
Diesel Range Organics (DRO) (C10-C25)	I	ND		0.24			mg/L			03/0	1/19 11:41	03/04/19 1	0:52	1
Residual Range Organics (RRO) (C25-C36)	I	ND		0.40			mg/L			03/0	1/19 11:41	03/04/19 1	0:52	1
		ΜВ												
Surrogate			Qualifier	Limits							repared	Analyz		Dil Fac
o-Terphenyl		81		50 - 150								03/04/19		1
n-Triacontane-d62		82		50 - 150						03/0)1/19 11:41	03/04/19 1	0:52	1
Lab Sample ID: LCS 590-2	1144/2-A							CI	ient	Sai	mple ID:	Lab Con	trol S	ample
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 21158												Prep B	atch:	21144
				Spike	-	LCS						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		_ D	%Rec	Limits		
Diesel Range Organics (DRO) (C10-C25)				1.60	1.21			mg/L			76	50 - 150		
Residual Range Organics (RRO) (C25-C36)				1.60	1.58			mg/L			99	50 - 150		
	LCS I	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
o-Terphenyl	86			50 - 150										
n-Triacontane-d62	93			50 - 150										
Lab Sample ID: LCSD 590	-21144/3-A						c	lient S	Sam	nple	ID: Lab	Control S	amp	e Dup
Matrix: Water												Prep Typ		
Analysis Batch: 21158				0								Prep B		21144
Analyte				Spike Added	LCSD Result			Unit		п	%Rec	%Rec. Limits	RPD	RPD Limit
Diesel Range Organics (DRO)				1.60	1.19			mg/L			74	50 - 150	2	
(C10-C25) Residual Range Organics (RRO)				1.60	1.54			mg/L			96	50 - 150	3	
(C25-C36)														
	LCSD I													
Surrogate	%Recovery	Qua	lifier	Limits										
o-Terphenyl	85			50 - 150										

50 - 150

89

Method: 6020B - Metals	(ICP/MS)
------------------------	----------

Lab Sample ID: MB 580-295753/ Matrix: Water Analysis Batch: 295933		мв								ole ID: Me e: Total R Prep Bat	ecove	erable
Analyte	Result	Qualifier	RL		MDL	Unit		D Pi	repared	Analyze	əd	Dil Fac
Arsenic	ND		0.0010			mg/L	·	03/0	7/19 11:11	03/08/19 1	2:16	1
Lab Sample ID: LCS 580-295753 Matrix: Water Analysis Batch: 295933	3/23-A						Clie			Lab Cont e: Total R Prep Bat	ecove	erable
			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
Arsenic			1.00	0.946			mg/L		95	80 - 120		
Lab Sample ID: LCSD 580-2957 Matrix: Water Analysis Batch: 295933	53/24-A					C	lient Sa			Control S e: Total R Prep Bat	ecove	erable
			Spike	LCSD	LCS	D				%Rec.		RPD
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic			1.00	0.959			mg/L		96	80 - 120	1	20

Initial

Amount

43 mL

259.2 mL

50 mL

50 mL

Batch

21195

21144

21158

295753

Number

Final

Amount

43 mL

2 mL

50 mL

50 mL

Dil

1

1

5

Factor

Run

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

8260C

3510C

3005A

6020B

NWTPH-Dx

Lab Sample ID: 590-10497-1

Analyst

Matrix: Water

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SEA

5 8

295933 03/08/19 13:55 FCW TAL SEA Lab Sample ID: 590-10497-2 Matrix: Water

Prepared

or Analyzed

03/05/19 21:35 MRS

03/01/19 11:41 NMI

03/04/19 17:07 NMI

03/07/19 11:11 JKM

Client Sample ID: MW-1B Date Collected: 02/28/19 14:00 Date Received: 02/28/19 16:45

Client Sample ID: MW-1A

Date Collected: 02/28/19 13:00

Date Received: 02/28/19 16:45

Prep Type

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	43 mL	43 mL	21195	03/05/19 21:56	MRS	TAL SPK
Total/NA	Prep	3510C			260 mL	2 mL	21144	03/01/19 11:41	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			21158	03/04/19 17:27	NMI	TAL SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	295753	03/07/19 11:11	JKM	TAL SEA
Total Recoverable	Analysis	6020B		5	50 mL	50 mL	295933	03/08/19 13:59	FCW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Spokane Environmental Solutions LLC Project/Site: Borrow Pit/0207-003

5

9

Laboratory: TestAmerica Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Washington	State Pro	gram	10	C569	01-06-20
The following analytes	are included in this repo	rt, but the laboratory	is not certified by th	e governing authority. Thi	s list may include an
The following analytes the agency does not of	•	rt, but the laboratory	is not certified by th	e governing authority. Thi	s list may include an

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-20
ANAB	DoD / DOE		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-22
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-20

Client: Spokane Environmental Solutions LLC Project/Site: Borrow Pit/0207-003

	1
): 590-10497-1	2
Laboratory	3
TAL SPK TAL SPK	4
TAL SEA TAL SEA	5
TAL SPK TAL SPK	6
	7
	8
	9
	10
	11
	12

Method	Method Description	Protocol	Laborator
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6020B	Metals (ICP/MS)	SW846	TAL SEA
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SEA
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK
5030C	Purge and Trap	SW846	TAL SPK
	e ferences: = Northwest Total Petroleum Hydrocarbon = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third	Edition, November 1986 And Its Updat	es.

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

¢

TestAmerica Spokane 11922 Essi 1st Ave Spokane, WA 99206 Prone (509) 924-9200 Fax (509) 924-9290		Chain	of Cu	stody I	Rec	ord	n I									12-2-2	
Client Information (Sub Contract Lab)	Sempler	PM: Canier Trac Ington, Randee E							Tracker	B NO(E)			COC No: 590-4156.1				
Clent Contact: Shipping/Receiving	Phone: E-Ma					nil: Stat						itate of Origin; Vashington				Page: Page 1 of 1	
Company: FestAmenica Laboratories, Inc.	Terra					Accreditations Required (See note): State Program - Washington						annigion			-	Job #:	
diffees: 755 Bih Street East.	Oue Date Request	ted.			1 Citat		i ani - ri		-		20.4				-	590-10497-1 Preservation C	odes:
ity:	3/12/2019 TAT Requested (days):					Analysis Requested							-	-	-	A - HCL B - NaOH	M-Hexane
acoma late, Zip:								1.5								C - Zn Acetate	N - None O - AsNaO2
/A. 98424					131						11		11	1		D - Nitric Acid E - NaHSO4	P - Na2045 O - Na2503
one; 53-922-2310(Tel) 253-922-5047(Fax)	PO#	PO#-									11				1	F - MeQH G - Amchior	R - Na2S203 5 - H2SO4
bal 233-922-0047(Fax)	WO #	WO#					104						11			H - Ascorbic Acid	
ojaci Name						for I									2	J - DI Water K - EDTA	V - MGAA W - pH 4-5
orrow Pit/0207-003	Project #: 59001518					Seril								taine	L - EDA Z - other (specifi		
te:	SSGW#:			-	Sample (Yes or No.	V IO									Con	Other:	
ample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wowster, Secolar, Ormanial St.	Field Filtered Sampla (Ye Perform MSMSD (Yes or	6020B/3005A (MOD) Arsenic									Total Number of cor		
	\sim	$>\!$		tion Code:		2				1					×	special	Instructions/Note:
W-1A (590-10497-1)	2/28/19	13:00 Pacific	1	Water	П	x								-	1		
W-1B (590-10497-2)	2/28/19	Pacific 14:00		Water	Ħ	x			-	-		+	+	+	1		
		Pacific			H	1	-			-							
					H	-				+		-	++	+			
	-			-		-	-			-		1		-		1.	
		1.00							1.1			1.1				1	
											10.5					handline.	
			1							1							
	10 C C C C C											1	++	+			
	-				++-	+			-			+	+	+			
ble: Since laboratory accreditations aré subject lo change, TestAmerica Lu rrently maintain accreditation in the State of Orgin listed above for analys boratories, inc. attention immediately. If all requested accreditations are	S/lests/matrix being analyze	id, the sample	5 must be ship	oed back to the	TestAn	nenca b	abovation/ n	t other	inclucte	nere table b	'his sampi se provida	le shipn id. Any	nent is for changes	rwarded to accre	under	chain-of-custody.) n status should be i	the laboratory does not prought to TestAmerica
ossible Hazard Identification				-	Sa				fee ma	y be a	ssesse Disposal	d if sa	mples	are re	taine	d longer than	(month)
eliverable Requested: I, II, III, IV, Other (specify)							nstructio		Den	Archi	ve For	Months					
npty Kit Relinquished by:	in a same same	OUTLA TO			-		(ISTUCIO	ins/QC	- wedn	nemer				-			
nhiethed by		Date:		Company	Time:	_		-		-	61ct	thed of:	Shipmen	-			-
Mavia 0700CL	3/1/19 Date/Time:	DeterTime: 3/1/19 15.76 Company Date/Time: Company			-	Received by Hung Hubs						Date/Time:			1 5	1030	Company TASE2 Company
inquished by	Date/Time:	Date/Time: Company			-	Received by:						-	Date/Time:				Company
Custody Seals Intact: Custody Seal No.:						Coder Temperature(s) °C and OpherRemarks:											

TestAmerica Spokane

Page 15 of 17

4/2/2019 (Rev. 1)

Login Sample Receipt Checklist

Client: Spokane Environmental Solutions LLC

Login Number: 10497 List Number: 1 Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	One of the two trip blanks was broken
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Job Number: 590-10497-1

List Source: TestAmerica Spokane

Login Sample Receipt Checklist

Client: Spokane Environmental Solutions LLC

Login Number: 10497 List Number: 2 Creator: Hobbs, Kenneth F

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-10497-1

List Source: TestAmerica Seattle

List Creation: 03/02/19 12:49 PM

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX B.2

SES, 2019b. Limited Assessment of Electric Avenue Waste Disposal/Fire Pit Training Area.

3810 East Boone Avenue, Suite 101 Spokane, Washington 99202 509.688.5376

April 23, 2019

Mr. Matt Breen Spokane International Airport 9000 West Airport Drive Spokane, Washington 99219

RE: Limited Assessment of Electric Avenue Waste Disposal/Fire Pit Training Area Spokane International Airport Spokane, Washington SIA Contract #19-43-9999-006 <u>SES Project No.: 0270-003</u>

Dear Mr. Breen:

Attached are the results and supporting documentation for the recent, limited groundwater monitoring event for the perfluorinated chemicals and conventional chemistry contaminants of concern. This monitoring event was conducted per your request to provide a snapshot of current shallow groundwater conditions beneath the Site. Samples were collected from groundwater monitoring wells installed in the 1990s on behalf of the Army Corps of Engineers and/or Spokane International Airports (SIA). The Site location is shown on **Figure 1**.

We understand that the site was formerly used for live fire training exercises where fires were intentionally set for training firefighting skills and techniques. We further understand that the site has an extensive history of assessment dating back to 1984. The latest Site Closure Summary was conducted by Herrera and Associates in 2003 which reported that the only contaminates of concern (COCs) exceeding the Model Toxics Control Act (MTCA) Method A cleanup criteria for unrestricted use in shallow groundwater were diesel-range petroleum hydrocarbons. These exceedances were reported as 'minor and infrequent'. The last reported sampling of these wells was in August 1999. Arsenic was sporadically detected in groundwater samples with exceedances of cleanup criteria observed in samples collected from both upgradient and down gradient wells.

BTEXN compounds were detected in soil samples collected from the boring (Sample FP001) where concentrations exceeding MTCA Method A cleanup criteria were observed. Concentrations of contaminants were observed to decrease with depth with minor exceedances of cleanup criteria noted in the sample collected at a depth of 10 feet bgs. SVOCs and furans/dioxins were also sampled, but none of these compounds exceeded cleanup criteria. SES did not collect soil samples during this limited assessment.

Because this area was used for active fire training exercises, sampling for PFOA/PFOS compounds and for polycyclic aromatic hydrocarbons (PAHs) was conducted to determine if these compounds are present at concentrations exceeding cleanup criteria. PAHs are often formed as a byproduct of incomplete combustion and this was one process formerly present at the site.

Site Monitoring Wells

There are four pairs of monitoring wells located on site. Each pair consists of a shallow- and a deep-screened well. Monitoring well pairs MW-7 and MW-8 were installed by the Army Corps of Engineers in 1990. Monitoring well pairs MW-13 and MW-14 were installed by SIA in 1992. In each of the well pairs, the well designated by an A suffix is the deeper of the pair and is generally screened across the contact between sequenced flood sediments and the underlying basalt. Specific construction details of those wells sampled during this event are further discussed below. Monitoring well locations are shown on **Figure 2**. Monitoring Well Logs are shown in **Attachment A**.

SES found integrity issues with many of the wells. Well monuments and caps were found to be distressed and in need of repair or replacement in order to maintain the structural integrity of the well and to protect groundwater. SES can provide an estimate for the repair of these monuments upon request. Details are provided in the Photographic Log included as **Attachment B**.

Groundwater Sampling

Groundwater samples were collected for PFOA/PFOS analysis from site monitoring wells MW-7, MW-8B, MW-13A, MW-13B, and MW-14B. Samples from MW-13A, MW-13B, and MW-14B were analyzed with the remaining samples placed on Hold.

Groundwater samples were collected for conventional chemistry and for PAHs from MW-7, MW-8B, MW-13B, and MW-14B. Samples from MW-13B and MW-14B were analyzed with the remaining samples placed on Hold.

While there are two wells associated with the MW-7 well pair, the wells were not labeled in the field and only one was readily accessible. The sample was named MW-7 in the field and it was determined later that this was monitoring well MW-7B.

Depth to water in each accessible well was measured to the nearest 1/100th of a foot prior to sampling. Groundwater flow was not calculated during this event as top of casing elevations were not readily available. However, regional groundwater flow is generally to the northeast, based on our review of previous reports.

Groundwater samples were collected from each well using a peristaltic pump with dedicated tubing for each well sampled. SES has vetted the sampling materials and has found them to be free of perfluorinated compounds. Purging and sampling using low-flow sampling techniques where flow rates were generally about 0.2 to 0.3 liters per minute (I/min) minimize drawdown and mixing of water within the well during purging and sampling.

Field parameters were measured with a Horiba-U52 water quality meter. Parameters include pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Once field parameters stabilized within 10% from reading to reading for each parameter, laboratory-prepared sample containers were filled with water from the wells, sealed, and placed on ice. In general, the field parameters indicated that groundwater was not adversely impaired by petroleum hydrocarbons or metals as dissolved oxygen was present and ORP readings were positive.

Monitoring Wells Sampled

Monitoring well MW-13A is the deepest of this well pair. The well has a total depth of 42 feet and is screened across the contact of sediment and basalt from 32-42 feet. Groundwater sampled is presumed to flow primarily atop this contact. SES placed the intake at approximately 38 feet in this well.

Monitoring well MW-13B is 20 feet in depth and is screened from 10-20 feet. SES placed the intake at approximately 16 feet in this well.

Monitoring well MW-14B is 20.5 feet in depth and is screened from 9-19 feet. SES placed the intake at approximately 18 feet in this well.

Analytical Results

PFOA and PFOS were detected in each of the samples collected. As concentrations of PFOA/PFOS are to be summed for compliance, each sample collected exhibited concentrations exceeding the screening level of 70 ng\L. Analytical results are shown in **Table 1**.

Concentrations of BTEX, Dx compounds and total arsenic did not exceed Method Reporting Limits (MRL) and/or MTCA Method A cleanup criteria in the samples collected. Analytical results are shown in **Table 2**.

cPAHs were not detected in samples at concentrations exceeding MRL. As Ecology uses a formula to determine compliance with cleanup criteria, the analytical values were calculated and determined to be less than the cleanup level for each of the samples submitted. Analytical results and method calculations are shown in **Table 3.** Laboratory analytical reports are included in **Attachment C** Analytical Results.

Summary

The highest concentration of perfluorinated compounds was detected in the groundwater sample collected from monitoring well MW-13B. This well is screened near-surface. In the deeper companion well MW-13A, concentrations are much lower. This well pair is in an inferred downgradient position for the former training area. The Analytical results suggest that perfluorinated compounds are either bound to soil within the capillary fringe of the vadose zone (smear zone) or are being diluted by a higher flow regimen in the lower portion of the perched aquifer. There is not enough sampling data either temporally or spatially to make a conclusive determination.

Concentrations of BTEX, Dx compounds and cPAHs were not detected at concentrations of regulatory significance during this sampling event. This could be the result of seasonal variability in flow with spring melt fostering dilution; a sampling event scheduled for late summer could verify this hypothesis.

Limitations

The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and

conditions set forth in our Agreement, and with the revised SES proposal dated January 31, 2019. No other warranty, express or implied, is made.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the wells and sampling intervals may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination.

This report is for the exclusive use of Spokane International Airports and its representatives. No third party shall have the right to rely on SES's opinions rendered in connection with the services or in this document without our written consent and the third party's agreement to be bound to the same conditions and limitations as Spokane International Airports.

SES appreciates the opportunity to provide these services. Please contact the undersigned regarding any questions related to the information provided in this letter report.

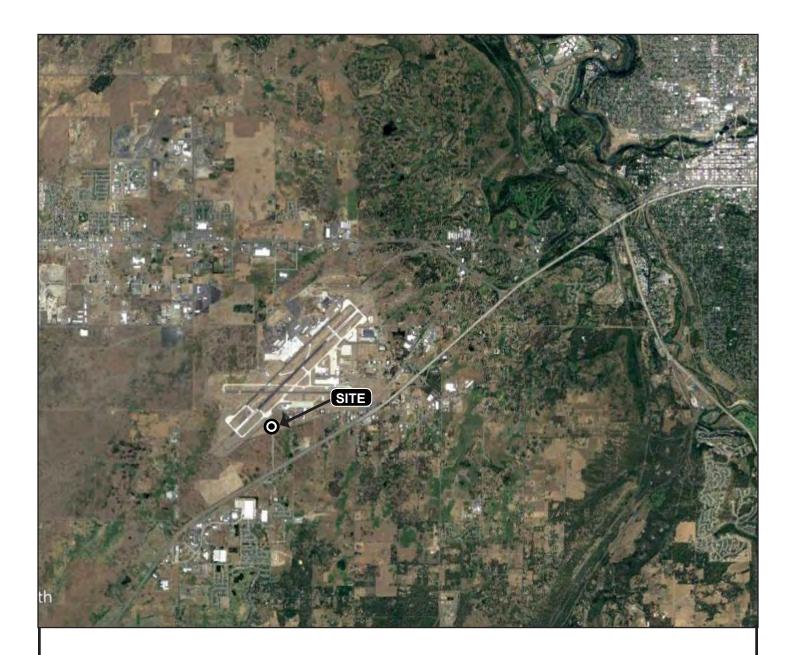
Sincerely,

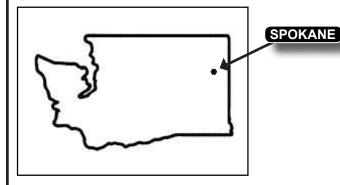
Spokane Environmental Solutions, LLC.

Gary D. Panther, LG, LEG

Attachments:

Figure 1: Location Map Figure 2: Site Map


- Table 1: Summary of Groundwater Analytical Results PFOA-PFOS
- **Table 2:** Summary of Groundwater Analytical Results Conventional Chemistry
- **Table 3:** Summary of Groundwater Analytical Results PAHs


Attachment A: Boring Logs Attachment B: Photographs Attachment C: Analytical Results

Figures

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. it is intended to assist in showing features discussed in an attached document.

LEGEND:

0

Site Monitoring Wells Pairs

Burn Pit - location based on observation from historic aerial photographs.

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. it is intended to assist in showing features discussed in an attached document.

Source: Google Maps

Tables

Table 1

Summary of Groundwater Analytical Results - Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) Limited Groundwater Assessment Electric Avenue Waste Disposal/Fire Training Area Spokane International Airport

			EPA-PFC/537M			
Well ID Sample Date Depth to			PFOA	PFOS		
Wen ib	well ID Sample Date	Water	Water (ng/L)	(ng/L)		
MW-13A	3/27/2019	17.00	60	480		
MW-13B	3/27/2019	13.90	5200	1100		
MW-14B	3/27/2019	16.25	860	230		
Groundw	ater Screening Lev	el (ng/L) ¹	70	70		

Notes:

¹ Groundwater screening levels were obtained from EPA's "Fact Sheet, PFOA & PFOS Drinking Water Health Advisories," dated November 2016. Values in **bold** font indicate that the result reported meets or exceeds the groundwater screening level.

Depth to water measured from top of casing.

ng/L - nanogram per liter

PFOA - perfluorooctanoic acid

PFOS - perfluorooctane sulfonic acid

Samples analyzed by ALS Global Laboratories, Kelso, Washington.

Table 2

Summary of Groundwater Analytical Results - Conventional Chemistry Limited Groundwater Assessment Electric Avenue Waste Disposal/Fire Training Area Spokane International Airport

			EPA-8260C			NWTF DRO	EPA-6020B		
Sample ID	Date Sampled	Depth to Water	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Total Xylenes ug/L	DRO mg/L	RRO mg/L	Arsenic mg/L
MW-13B	3/27/2019	13.90	<0.4	<1.0	<1.0	<3.0	<0.23	<0.38	<0.0050
MW-14B	3/27/2019	16.25	<0.4	<1.0	<1.0	<3.0	0.34	<0.40	<0.0050
MTCA Method A C	leanup Level ^a		5	1000	700	1000	0.5	0.5	0.005

Notes:

a: MTCA = Model Toxics Control Act Method A cleanup level for unrestricted use. Method B value used where Method A value not established.

-- = Not Analyzed

DRO = Diesel-Range Organics.

RRO = Residual-Range Organics.

BTEX = benzene, toluene, ethylbenzene, (total) xylenes.

BOLD = Exceedance of cleanup level.

Samples Analyzed by TestAmerica, Spokane, WA

Table 3

Summary of Groundwater Analytical Results - PAH Toxicity Equiviency Factors Limited Groundwater Assessment Electric Avenue Waste Disposal/Fire Training Area Spokane International Airport

сРАН	MW-13B Measured Groundwater Concentration (ug/L)	Toxicity Equivilency Factor TEF (unitless) ¹	Toxicity Equivilent Concentration TEQ (ug/L) ²
Benzo(a)pyrene	0.0455	1	0.0455
Benzo(a)anthracene	0.0455	0.1	0.00455
Benzo(b)flouranthene	0.0455	0.1	0.00455
Benzo(k)flouranthene	0.0455	0.1	0.00455
Chrysene	0.0455	0.1	0.00455
Dibenz(a,h)anthracene	0.0455	0.1	0.00455
indeno(1,2,3-cd)pyrene	0.0455	0.1	0.00455
	0.3185		0.04095
Sum	0.5185		
Sum Method A Cleanup Level (Table 720		I	0.1 ug/L
			0.1 ug/L
		Toxicity Equivilency Factor TEF (unitless) ¹	0.1 ug/L Toxicity Equivilent Concentration TEQ (ug/L) ²
Method A Cleanup Level (Table 720	-1)	Toxicity Equivilency Factor TEF (unitless) ¹	
Method A Cleanup Level (Table 720 cPAH	-1) MW-14B Measured Groundwater Concentration (ug/L)	Toxicity Equivilency Factor TEF (unitless) ¹ 1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ²
Method A Cleanup Level (Table 720 cPAH Benzo(a)pyrene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455	1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455
Method A Cleanup Level (Table 720 CPAH Benzo(a)pyrene Benzo(a)anthracene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455 0.0455	1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455 0.00455
Method A Cleanup Level (Table 720 cPAH Benzo(a)pyrene Benzo(a)anthracene Benzo(b)flouranthene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455 0.0455 0.0455	1 0.1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455 0.00455 0.00455 0.00455
Method A Cleanup Level (Table 720 cPAH Benzo(a)pyrene Benzo(a)anthracene Benzo(b)flouranthene Benzo(k)flouranthene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455 0.0455 0.0455 0.0455	1 0.1 0.1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455 0.00455 0.00455 0.00455 0.00455 0.00455
Method A Cleanup Level (Table 720 cPAH Benzo(a)pyrene Benzo(a)anthracene Benzo(b)flouranthene Benzo(k)flouranthene Chrysene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455	1 0.1 0.1 0.1 0.1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455 0.00455 0.00455 0.00455 0.00455 0.00455 0.00455
Method A Cleanup Level (Table 720 cPAH Benzo(a)pyrene Benzo(a)anthracene Benzo(b)flouranthene Benzo(k)flouranthene Chrysene Dibenz(a,h)anthracene	-1) MW-14B Measured Groundwater Concentration (ug/L) 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455	1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Toxicity Equivilent Concentration TEQ (ug/L) ² 0.0455 0.00455 0.00455 0.00455 0.00455 0.00455 0.00455 0.00455 0.00455 0.00455

Notes:

1. Toxicity Equivilency Factor (TEF) from MTCA Table 720-1.

2. TEQ = cPAH measured concentration * TEF

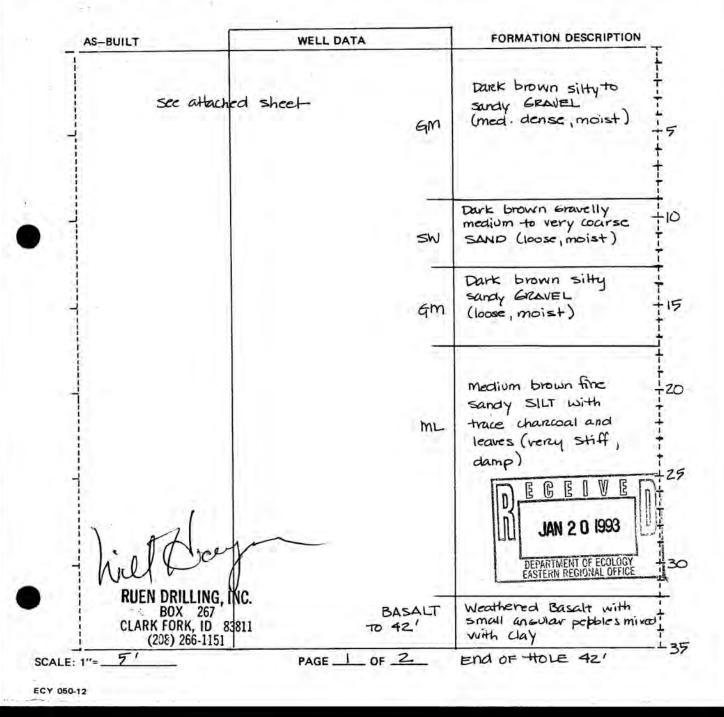
cPAH = Carcinigenic Polycyclic Aromatic Hydrocarbons

MTCA = Model Toxics Control Act Method Table 720-1 cleanup level for unrestricted use.

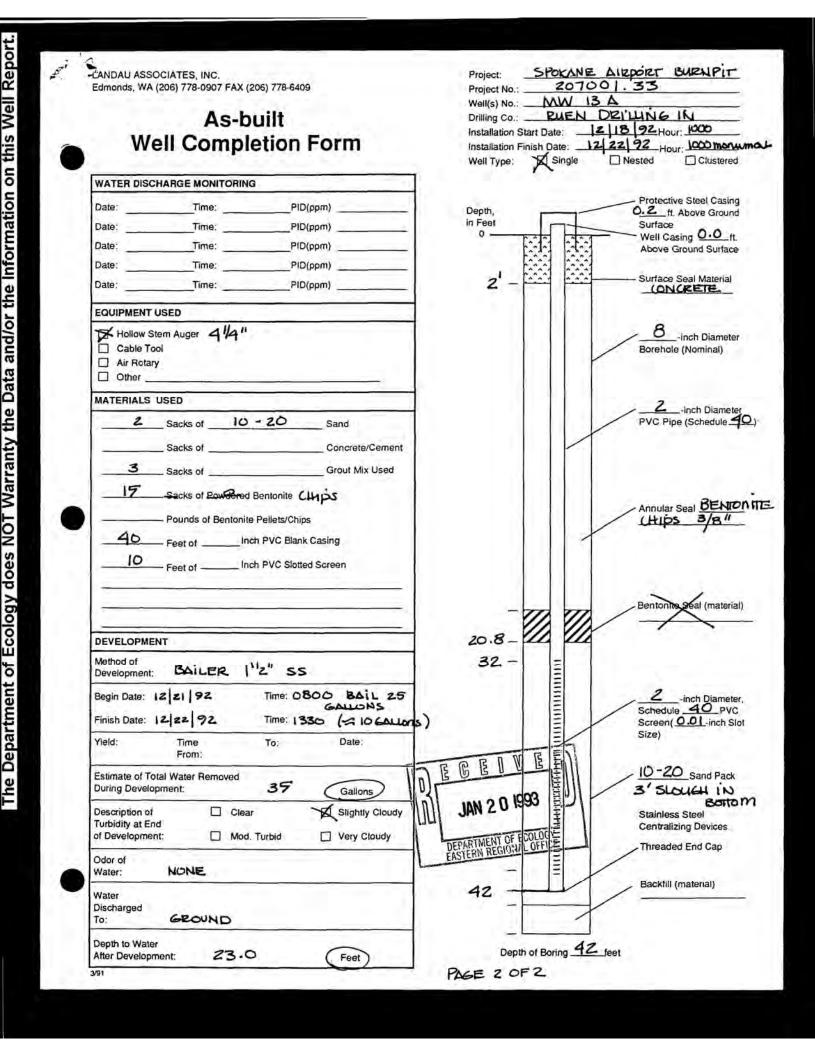
BOLD = Exceedance of cleanup level.

Samples Analyzed by TestAmerica, Spokane, WA

Attachment – A


Boring Logs

RESOURCE PROTECTION WELL REPORT


START CARD NO. 57709

PROJECT NAME: AIRPORT BURN PIT	I OCATION: T 29 N R. 42E, SEC. U / NE / NE
BULLING METHOD: 91/4" HOLLOW STEM AUGER \$ POT	ARY DISTANCE (W) 112 FT. FROM N/S SECTION LINE
DRILLER: WILL HAYES (2037) FIRM: RUEN DRILLING, INC (RUENCOPI I	(5) 450 FT. FROM E/W SECTION LINE 159 BATUM: USES MONUMENT 250' SOUTH OF RUNWAY
SIGNATURE:	WATER LEVEL ELEVATION: (23') 2,357.1'
REPRESENTATIVE: DEB SULVELL	DEVELOPED: 12/22 92

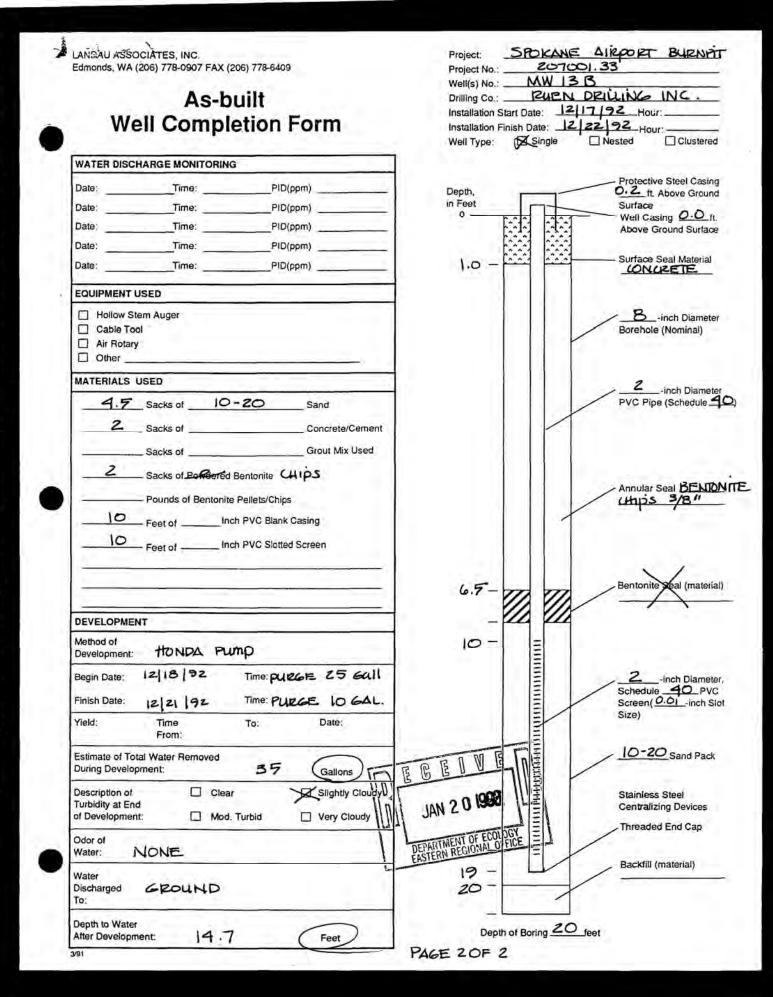
1

-

RESOURCE PROTECTION WELL REPORT

.

4

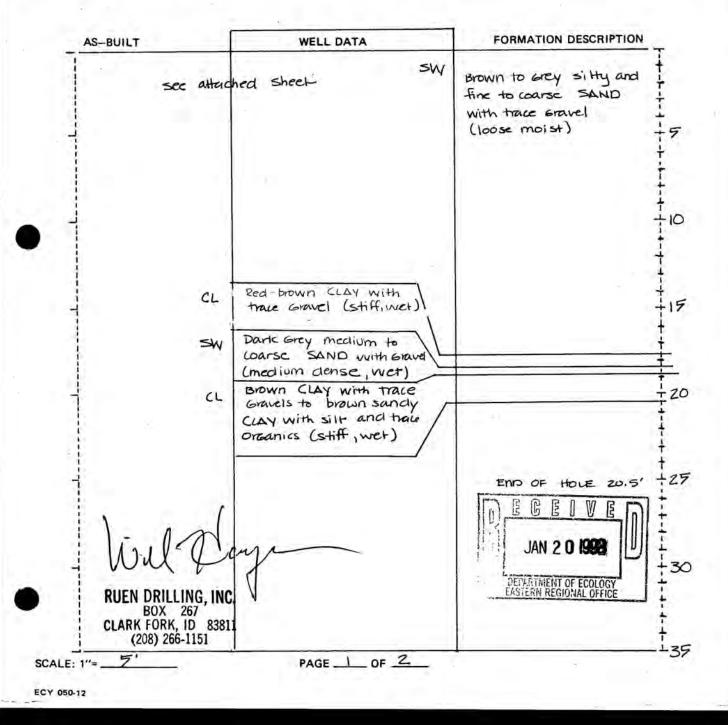

START CARD NO. 57709

PROJECT NAME: 5	POKANE	AIRPORT	BURNPIT
FIL INDENTIFICA	TION NO	MW13B	
RILLING METHOD	. 4'4" to	LIOW STEM	AUGER
DRILLER: WILL H	AVES (2	035)	
FIRM: PUEN DR	LILING (RUENCDI	15 QM)
SIGNATURE:			
CONSULTING FIRM:	LANDAU	ASSOCI ATE	ES INC.
REPRESENTATIVE	DEB	SUMELL	

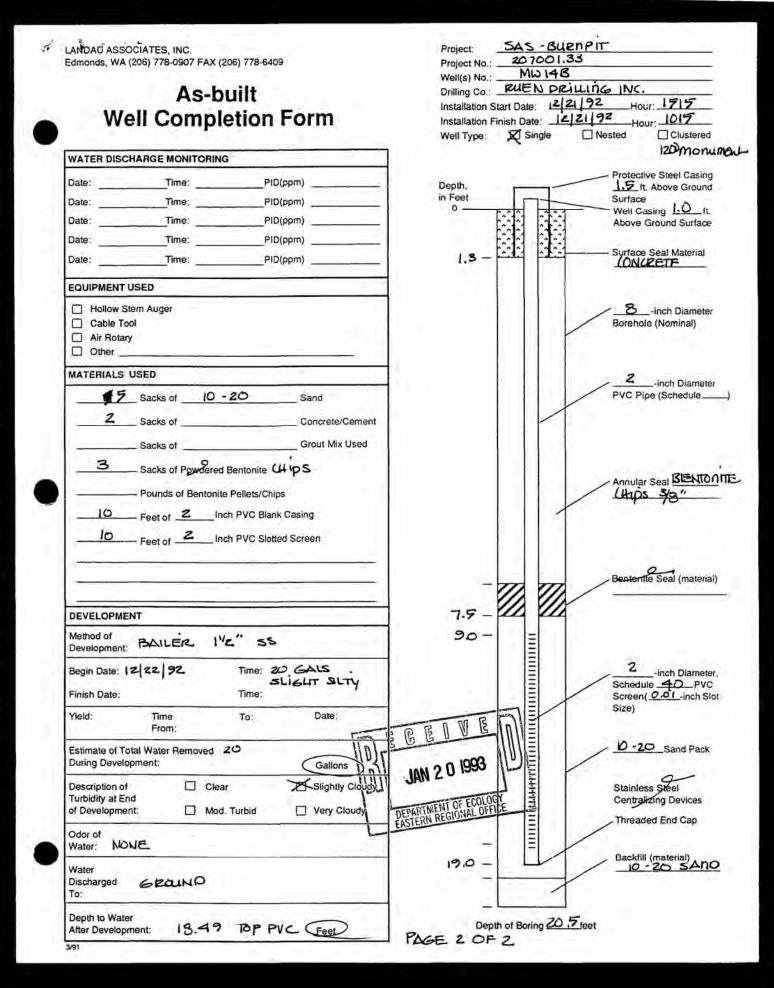
1

LOCATION: TZAN, R 42E	SEC. 6 1/4 NE 1/4 NE
DISTANCE: (W) 112 FT. F	ROM N/S SECTION LINE
(S) 450_ FT. F	ROM ENV SECTION LINE
WATER LEVEL ELEVATION:	(14.7) 2,366.71
INSTALLED:	32 12/17/92
DEVELOPED:	12/21/92

AS-BUILT	WELL DATA	FORMATION DESCRIPTION
see attached	d sheet GM	DARK brown silty to sandy GRAVEL (med.dense, moist)
	Sh	Dark brown Gravelly medium to very coarse SAND (loose, moist)
	Ģn	Dark brown silty Sandy GRAVEL (1005C, moist)
	MI	Medium brown fine sandy SILT W/ trace charcoal and leaves (very stiff, damp) END OF HOLE 20 FT.
		BEGEIVEN
RUEN DRILLING, BOX 267 CLARK FORK, ID	83811	DEPARTMENT OF ECOLOGY EASTERN REGIONAL OFFICE
(208) 266-1151	1	1. 1 m



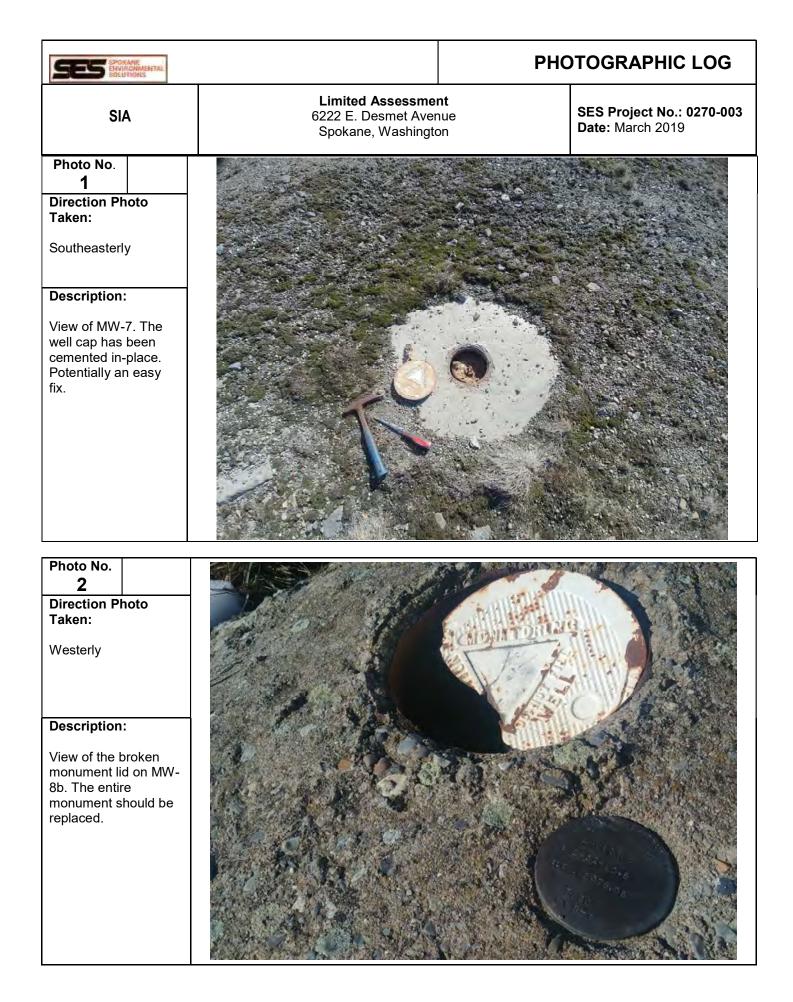
The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

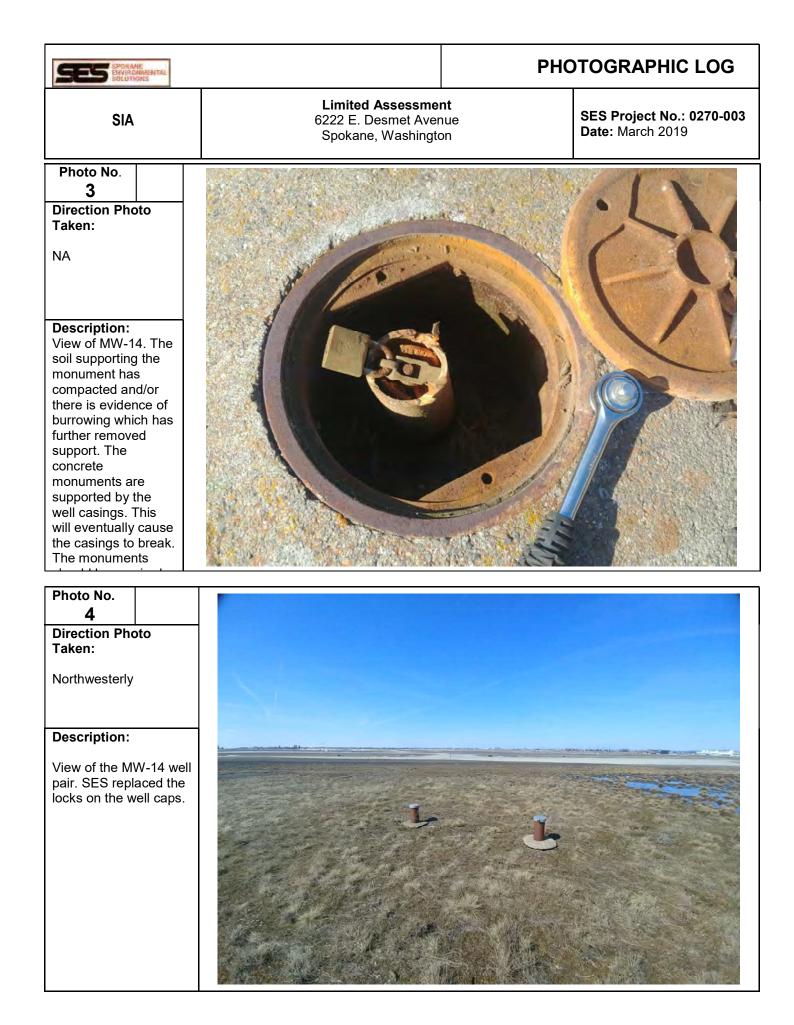

START CARD NO. 57709

PROJECT NAME:	SPOKAN	E AIR PURT	BURNPIT
ELL INDENTIFIC	ATION NO	MW 14B	
RILLING METHO	D: 44" HOL	OW STEM AUG	ER
DRILLER: WIL	HAYES	(2039)	
FIRM: BUEN D	FILLING	(RUENCDI I	15 qm)
SIGNATURE:			
CONSULTING FIRM	A: LANDAU	ASSOCIATES	INC
REPRESENTATIVE	DEB S	UMELL	

LOCATION: T 24N, R 42E, SEC. 6 1/4 NE 1/4 NE
DISTANCE:(W) 165 FT. FROM N/S SECTION LINE
(5) 555 FT. FROM EN SECTION LINE DATUM: USGS MONUMENT 250' SOUTH OF BUNNALY
WATER LEVEL ELEVATION: (18.5) 2,362.9
INSTALLED: 12 21 92
DEVELOPED: 12/22/92

2




The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

Attachment – B

Photographs

Attachment – C

Analytical Results

Service Request No:K1902735

Gary Panther Spokane Environmental Solutions, LLC 3810 E. Boone Avenue, Ste 101 Spokane, WA 99202

Laboratory Results for: Burn Pits

Dear Gary,

Enclosed are the results of the sample(s) submitted to our laboratory March 29, 2019 For your reference, these analyses have been assigned our service request number **K1902735**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leaf Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:	Spokane Environmental Solutions, LLC
Project:	Burn Pits
Sample Matrix:	Water

Service Request: K1902735 Date Received: 03/29/2019

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 03/29/2019. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Organic LC:

Method PFC/537M, 04/08/2019: Samples MW-13B and MW-14B required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Approved by

Date

04/19/2019

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-13A	Lab ID: K1902735-001					
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorooctane sulfonic acid (PFOS)	480			4.2	ng/L	PFC/537M
Perfluorooctanoic acid (PFOA)	60			1.7	ng/L	PFC/537M
CLIENT ID: MW-13B	Lab ID: K1902735-002					
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorooctane sulfonic acid (PFOS)	5200			420	ng/L	PFC/537M
Perfluorooctanoic acid (PFOA)	1100			17	ng/L	PFC/537M
CLIENT ID: MW-14B	Lab ID: K1902735-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
Perfluorooctane sulfonic acid (PFOS)	860			43	ng/L	PFC/537M
Perfluorooctanoic acid (PFOA)	230			1.7	ng/L	PFC/537M

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	<u>DATE</u>	TIME
K1902735-001	MW-13A	3/26/2019	
K1902735-002	MW-13B	3/26/2019	
K1902735-003	MW-14B	3/26/2019	

	-	ental	131 131					9	I OF CUSTODY 7372 one (360) 577-7222 / 800-695 ww.algglobal.com	-7222/FA		SR#O_2735 COC Set COC# Page 1 of 1
Project Name BURN Pit	S Project	Number			14D				1			
Project Manager GARY PANTH					÷	-	-	-				
Company Sooking En		TAL Solution	15	OF CONTAINERS								
Addres 3810 E. BOOME	AUE, STO	= 101, SOULANE, 6	10 95202	NTAIL								
Phone 09-954-5090	B B B B B B B B B B B B B B B B B B B	R Spoking union		CO	FOA							
Sampler Signature	Sampler	r Printed Name	2 101.1	NUMBER OF	PC(537M / PFOA				Remarks			
CLIENT SAMPLE ID	LABID	SAMPLING Date Time	Matrix							1		
1. MW-13A		3-26.19		2	×							
2. MW-13B		3-26-19		2	X							
3. MW-14B		3.26.19	1 1	2	X		1.00					
4. MW- 8B		3-26-19		2	1.11	1			HOLD			
5. MW - 7		3-26-19		Z					HOLD			
6.		1.2.1. Contraction	1.1.1.1.1.1.1			1117		0.01		2		
7.					6.1							
8.			1									
9,					1.1				1.1	1		
10.	1		1°					1.				
Report Requirements I. Routine Report: Method Elank, Surrogate, as required I. Report Dup., MS, MSD	P.O.#g Bill To	Dice Information 270-003 CARY PANT AM ENULIVIENT	NER							1 Co Ci	hich metals are to be analyzed r Cu Fe Po Mg Mn Mo Ni K Ag Cr Cu Fe Po Mg Mn Mo Ni K A	
as required III. CLP Like Summary (no raw data)	=	ound Requireme	nts	becial	Instru	ctions	Comr	nenis:	Indic	ate Stat	e Hydrocarbon Procedure: AK CA V	VI Northwest Other (Circle One)
IV. Deta Validation Report V EDD	X	Standard										
the second	t it	Requested Report Date		-			-			-		
Relinquished By:	(A)	Received By:	1100	Rel	inqui	shed	By:	- 11	Received I	sy:	Relinquished By:	Received By:
Sigheture Oft	Signature	Signature NEWSC Signa		nature				Signature		Signature	Signature	
Crown D. Pourtuch	Printed	ames	Printe	ed Name				Printed Name		Printed Name	Printed Name	
Firm Spoknecku, Solutio Date/Time 3/27/19 1500	w Firm 3	29/19/093							Firm		Firm	Firm
Date/Time 3/27/19 1500	Date/Tim	e l	Date/	Time				1	Date/Time		Date/Time	Date/Time

Page 7 of 24

ALS				e CV		
	Cooler Receipt and	Preservation Form	00-1-2	5		
client Spokane Envivo	nmental	Service Request K19	9 UTT	15		
Received: 3/29/19 Opened:	3/29/19By:	Unloaded	d: <u>3/29/19</u> By: <u>9</u>	The second		
1. Samples were received via? USPS	Fed Ex UPS	OHL PDX Courie	er Hand Delivered			
-		velope Other		NA		
3. Were <u>custody seals</u> on coolers?		If yes, how many and wh	ere? $1 \neq \gamma \beta$	_		
If present, were custody seals intact?	Y N	If present, were they s		(Y) N		
Raw Corrected. Raw Corrected Cooler Temp Cooler Temp Blank Temp Blank	Corr. Thermometer Factor ID	Cooler/COC ID NA	Tracking Numbe	r NA Filed		
Cooler Temp Dooler Temp Blank Temp Blank	-0.2 391	97272 1	1808 322790	NA Filed		
4. Packing material: Inserts Baggies	Bubble Wrap Gel Packs		Sleeves			
5. Were custody papers properly filled out			NA	Y N		
6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA (Y) N						
If applicable, tissue samples were received: Frozen Partially Thawed Thawed 7. Were all sample labels complete (i.e analysis, preservation, etc.)? NA (Y) N						
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA $\begin{pmatrix} y \\ y \end{pmatrix}$ N						
9. Were appropriate bottles/containers and	volumes received for the te	ests indicated?	NA	N (Y)		
10. Were the pH-preserved bottles (see SMG	OGENSOP) received at the	appropriate pH? Indicate	in the table below (NA	Y N		
11. Were VOA vials received without headspace? Indicate in the table below.						
12. Was C12/Res negative?			NA	У у м		
Sample ID on Bottle	Sample ID on CC	×	Identified by:			
	<u>}</u>					
<u> </u>		·				
			· · · · · · · · · · · · · · · · · · ·			
	e Count Out of Head- e Type Temp space Bro	ke pH Reagent	Volume Reagent Lot added Number	Initials Time		
	a the temp share Dir	no pit neggail	Annon Isalimet	THE FINE		

Notes, Discrepancies, & Resolutions:

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1902735
Project:	Burn Pits/	

Sample Name:	MW-13A
Lab Code:	K1902735-001
Sample Matrix:	Water

Date Collected: 03/26/19 **Date Received:** 03/29/19

Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		KPETERSEN	CMULLER
Sample Name: Lab Code: Sample Matrix:	MW-13A K1902735-001.R01 Water		Date Collected: 03/26/19 Date Received: 03/29/19
Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		KPETERSEN	CMULLER
Sample Name: Lab Code: Sample Matrix:	MW-13B K1902735-002 Water		Date Collected: 03/26/19 Date Received: 03/29/19

Analysis Method PFC/537M

Sample Name:	MW-13B
Lab Code:	K1902735-002.R01
Sample Matrix:	Water

Analysis Method PFC/537M

Sample Name:	MW-13B
Lab Code:	K1902735-002.R02
Sample Matrix:	Water

Analysis Method PFC/537M

Extracted/Digested By

KPETERSEN

Analyzed By CMULLER

Date Collected: 03/26/19 **Date Received:** 03/29/19

Extracted/Digested By KPETERSEN

Analyzed By CMULLER

Date Collected: 03/26/19 **Date Received:** 03/29/19

Extracted/Digested By **KPETERSEN**

Analyzed By CMULLER

Analyst Summary report

Client:	Spokane Environmental Solutions, LLC
Project:	Burn Pits/

Service Request: K1902735

Sample Name:MW-14BLab Code:K1902735-003Sample Matrix:Water

Date Collected: 03/26/19 **Date Received:** 03/29/19

Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		KPETERSEN	CMULLER
Sample Name:	MW-14B		Date Collected: 03/26/19
Lab Code:	K1902735-003.R01		
			Date Received: 03/29/19
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By
PFC/537M		KPETERSEN	CMULLER

Sample Name:	MW-14B
Lab Code:	K1902735-003.R02
Sample Matrix:	Water

Analysis Method PFC/537M **Date Collected:** 03/26/19 **Date Received:** 03/29/19

Extracted/Digested By KPETERSEN Analyzed By CMULLER

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Organic Compounds by HPLC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K	K1902735
Project:	Burn Pits	Date Collected: 0	3/26/19
Sample Matrix:	Water	Date Received: 0.	3/29/19 09:30
Sample Name: Lab Code:	MW-13A K1902735-001	Units: n Basis: N	0

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	480	4.2	1	04/03/19 16:30	4/1/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	60	1.7	1	04/03/19 16:30	4/1/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	97	25 - 121	04/03/19 16:30	
13C4-PFOA	87	22 - 130	04/03/19 16:30	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request:	K1902735
Project:	Burn Pits	Date Collected:	03/26/19
Sample Matrix:	Water	Date Received:	03/29/19 09:30
Sample Name: Lab Code:	MW-13B K1902735-002	Units: Basis:	e

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	5200	420	100	04/08/19 12:37	4/1/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	1100	17	10	04/08/19 12:27	4/1/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	87	25 - 121	04/08/19 12:37	
13C4-PFOA	86	22 - 130	04/08/19 12:27	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request:	K1902735
Project:	Burn Pits	Date Collected:	03/26/19
Sample Matrix:	Water	Date Received:	03/29/19 09:30
Sample Name: Lab Code:	MW-14B K1902735-003	Units: Basis:	e

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	860	43	10	04/08/19 12:48	4/1/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	230	1.7	1	04/03/19 16:51	4/1/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	91	25 - 121	04/08/19 12:48	
13C4-PFOA	85	22 - 130	04/03/19 16:51	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Organic Compounds by HPLC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	Spokane Environmental Solutions, LLC
Project:	Burn Pits
Sample Matrix:	Water

Service Request: K1902735

SURROGATE RECOVERY SUMMARY

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M
Extraction Method:	EPA 3535A

		13C4-PFOS	13C4-PFOA	
Sample Name	Lab Code	25-121	22-130	
MW-13A	K1902735-001	97	87	
MW-13B	K1902735-002	87	86	
MW-14B	K1902735-003	91	85	
Method Blank	KQ1904177-04	93	80	
Lab Control Sample	KQ1904177-03	90	82	

Analytical Report

Client:	Spokane Environmental Solutions, LLC	Service Request: K1902735
Project:	Burn Pits	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ1904177-04	Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoroalkane Sulfonic Acids Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	04/03/19 14:04	4/1/19	
Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	ND U	2.0	1	04/03/19 14:04	4/1/19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C4-PFOS	93	25 - 121	04/03/19 14:04	
13C4-PFOA	80	22 - 130	04/03/19 14:04	

QA/QC Report

Client:	Spokane Environmental Solutions, LLC	Service Request:	K1902735
Project:	Burn Pits	Date Analyzed:	04/03/19
Sample Matrix:	Water	Date Extracted:	04/01/19

Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:	PFC/537M	Units:	ng/L
Prep Method:	EPA 3535A	Basis:	NA
		Analysis Lot:	630513

Lab Control Sample KQ1904177-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorooctane sulfonic acid (PFOS)	35.0	29.7	118	71-139
Perfluorooctanoic acid (PFOA)	42.7	32.0	133	74-146

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-10668-1 Client Project/Site: SIA Burn Pits

For:

Spokane Environmental Solutions LLC 3810 E. Boone Avenue Suite #101 Spokane, Washington 99202

Attn: Gary Panther

tardue trington

Authorized for release by: 4/10/2019 11:38:58 AM

Randee Arrington, Project Manager II (509)924-9200 randee.arrington@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	9
Chronicle	14
Certification Summary	15
Method Summary	16
Chain of Custody	17
Receipt Checklists	19

Job ID: 590-10668-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 3/26/2019 5:07 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 12.6° C.

Receipt Exceptions

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): Trip Blank (590-10668-5)

The following samples were received at the laboratory outside the required temperature criteria: MW-14b (590-10668-1), MW-13b (590-10668-2), MW-8b (590-10668-3), MW-7 (590-10668-4) and Trip Blank (590-10668-5). The samples are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

The following samples were put on hold by the client on 03/27/2019: MW-8b (590-10668-3), MW-7 (590-10668-4).

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons appear to be due to heavily weathered diesel and/or biogenic interference in the following sample: MW-14b (590-10668-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Spokane Environmental Solutions LLC Project/Site: SIA Burn Pits

Job ID: 590-10668-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-10668-1	MW-14b	Water	03/26/19 14:00	03/26/19 17:07
590-10668-2	MW-13b	Water	03/26/19 14:45	03/26/19 17:07

Definitions/Glossary

Client: Spokane Environmental Solutions LLC Project/Site: SIA Burn Pits

Glossary Abbreviation

¤

%R CFL

CNF DER

Dil Fac

DL, RA, RE, IN

DL

DLC

EDL LOD

LOQ

MDA

MDC

MDL

ML

NC

ND

PQL QC

Job ID: 590-10668-1

	_
	3
These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	<i>A</i>
Percent Recovery	
Contains Free Liquid	5
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	6
Dilution Factor	0
Detection Limit (DoD/DOE)	-
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	
Estimated Detection Limit (Dioxin)	8
Limit of Detection (DoD/DOE)	
Limit of Quantitation (DoD/DOE)	9
Minimum Detectable Activity (Radiochemistry)	
Minimum Detectable Concentration (Radiochemistry)	10
Method Detection Limit	
Minimum Level (Dioxin)	11
Not Calculated	
Not Detected at the reporting limit (or MDL or EDL if shown)	12
Practical Quantitation Limit	
Quality Control	
Polativo Error Patio (Padiochomistru)	

- RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 590-10668-1

Matrix: Water

Lab Sample ID: 590-10668-1

Client Sample ID: MW-14b Date Collected: 03/26/19 14:00 Date Received: 03/26/19 17:07

Method: 8260C - Volatile O	lethod: 8260C - Volatile Organic Compounds by GC/MS											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	ND		0.40		ug/L			03/27/19 21:57	1			
Ethylbenzene	ND		1.0		ug/L			03/27/19 21:57	1			
m,p-Xylene	ND		2.0		ug/L			03/27/19 21:57	1			
o-Xylene	ND		1.0		ug/L			03/27/19 21:57	1			
Toluene	ND		1.0		ug/L			03/27/19 21:57	1			
Xylenes, Total	ND		3.0		ug/L			03/27/19 21:57	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
1,2-Dichloroethane-d4 (Surr)			80 - 120					03/27/19 21:57	1			
4-Bromofluorobenzene (Surr)	102		80 - 120					03/27/19 21:57	1			
Dibromofluoromethane (Surr)	103		80 - 120					03/27/19 21:57	1			
Toluene-d8 (Surr)	105		80 - 120					03/27/19 21:57	1			

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
2-Methylnaphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Acenaphthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Acenaphthylene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Benzo[a]anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Benzo[a]pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Benzo[b]fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Benzo[g,h,i]perylene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Benzo[k]fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Chrysene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Dibenz(a,h)anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Fluorene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Indeno[1,2,3-cd]pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Naphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Phenanthrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	55		44 - 120				03/28/19 13:33	03/28/19 15:27	1
Nitrobenzene-d5	49		36 - 126				03/28/19 13:33	03/28/19 15:27	1
p-Terphenyl-d14	71		51 - 121				03/28/19 13:33	03/28/19 15:27	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	0.34		0.24		mg/L		04/05/19 10:17	04/05/19 16:42	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg/L		04/05/19 10:17	04/05/19 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		50 - 150				04/05/19 10:17	04/05/19 16:42	1
n-Triacontane-d62	87		50 - 150				04/05/19 10:17	04/05/19 16:42	1

Client Sample Results

Job ID: 590-10668-1

Matrix: Water

Matrix: Water

6

Lab Sample ID: 590-10668-1

Client Sample ID: MW-14b Date Collected: 03/26/19 14:00 Date Received: 03/26/19 17:07

Method: 6020B - Meta	lls (ICP/MS) - Total Recoverabl	е						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.0050		mg/L		04/08/19 17:43	04/09/19 15:50	5
Client Sample ID: M	/W-13b				L	ab Sample	e ID: 590-10	668-2

Client Sample ID: MW-13b Date Collected: 03/26/19 14:45 Date Received: 03/26/19 17:07

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	ug/L			03/27/19 22:18	1
Ethylbenzene	ND		1.0	ug/L			03/27/19 22:18	1
m,p-Xylene	ND		2.0	ug/L			03/27/19 22:18	1
o-Xylene	ND		1.0	ug/L			03/27/19 22:18	1
Toluene	ND		1.0	ug/L			03/27/19 22:18	1
Xylenes, Total	ND		3.0	ug/L			03/27/19 22:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 120				03/27/19 22:18	1
4-Bromofluorobenzene (Surr)	98		80 - 120				03/27/19 22:18	1
Dibromofluoromethane (Surr)	98		80 - 120				03/27/19 22:18	1
Toluene-d8 (Surr)	105		80 - 120				03/27/19 22:18	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
2-Methylnaphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Acenaphthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Acenaphthylene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Benzo[a]anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Benzo[a]pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Benzo[b]fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Benzo[g,h,i]perylene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Benzo[k]fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Chrysene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Dibenz(a,h)anthracene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Fluoranthene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Fluorene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Indeno[1,2,3-cd]pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Naphthalene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Phenanthrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Pyrene	ND		0.091		ug/L		03/28/19 13:33	03/28/19 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		44 - 120				03/28/19 13:33	03/28/19 15:54	1
Nitrobenzene-d5	69		36 - 126				03/28/19 13:33	03/28/19 15:54	1
p-Terphenyl-d14	86		51 - 121				03/28/19 13:33	03/28/19 15:54	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Organics (DRO)	ND	0.23		mg/L		04/05/19 10:17	04/05/19 17:01	1	
(C10-C25)									

Job ID: 590-10668-1

Client Sample ID: MW-13b Date Collected: 03/26/19 14:45 Date Received: 03/26/19 17:07

Lab Sample ID: 590-10668-2 Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		0.38		mg/L		04/05/19 10:17	04/05/19 17:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				04/05/19 10:17	04/05/19 17:01	1
n-Triacontane-d62	88		50 - 150				04/05/19 10:17	04/05/19 17:01	1
Method: 6020B - Metals (ICP	P/MS) - Total F	Recoverab	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050		mg/L		04/04/19 14:09	04/05/19 13:11	5

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-21494/5 Matrix: Water

Analysis Batch: 21494

MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene ND 0.40 ug/L 03/27/19 14:59 1 Ethylbenzene ND 1.0 ug/L 03/27/19 14:59 1 ND m,p-Xylene 2.0 ug/L 03/27/19 14:59 1 o-Xylene ND 1.0 ug/L 03/27/19 14:59 1 Toluene ND 1.0 ug/L 03/27/19 14:59 1 Xylenes, Total ND 3.0 ug/L 03/27/19 14:59 1 MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	96		80 - 120		03/27/19 14:59	1	
4-Bromofluorobenzene (Surr)	100		80 - 120		03/27/19 14:59	1	
Dibromofluoromethane (Surr)	95		80 - 120		03/27/19 14:59	1	
Toluene-d8 (Surr)	108		80 - 120		03/27/19 14:59	1	

Lab Sample ID: LCS 590-21494/1003 Matrix: Water Analysis Batch: 21494

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.35		ug/L		93	80 - 126	
Ethylbenzene	10.0	10.2		ug/L		102	80 - 120	
m,p-Xylene	10.0	10.0		ug/L		100	80 - 120	
o-Xylene	10.0	9.77		ug/L		98	80 - 120	
Toluene	10.0	10.2		ug/L		102	80 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: LCSD 590-21494/6 Matrix: Water Analysis Batch: 21494

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	10.0	8.86		ug/L		89	80 - 126	5	25
Ethylbenzene	10.0	10.0		ug/L		100	80 - 120	1	25
m,p-Xylene	10.0	10.0		ug/L		100	80 - 120	0	25
o-Xylene	10.0	9.75		ug/L		97	80 - 120	0	25
Toluene	10.0	9.74		ug/L		97	80 - 123	5	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	108		80 - 120

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

5

7

Client Sample ID: Method Blank

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-21528/1-A **Matrix: Water**

Analysis Batch: 21519

Analysis Batch: 21519								Prep Batch	21528
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
2-Methylnaphthalene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Acenaphthene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Acenaphthylene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Anthracene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Benzo[a]anthracene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Benzo[a]pyrene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Benzo[b]fluoranthene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Benzo[g,h,i]perylene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Benzo[k]fluoranthene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Chrysene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Dibenz(a,h)anthracene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Fluoranthene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Fluorene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Indeno[1,2,3-cd]pyrene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Naphthalene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Phenanthrene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
Pyrene	ND		0.090		ug/L		03/28/19 13:33	03/28/19 14:08	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil
2-Fluorobiphenyl (Surr)	72		44 - 120	03/28/19 13:33	03/28/19 14:08	
Nitrobenzene-d5	85		36 - 126	03/28/19 13:33	03/28/19 14:08	
p-Terphenyl-d14	93		51 - 121	03/28/19 13:33	03/28/19 14:08	

Lab Sample ID: LCS 590-21528/2-A Matrix: Water Analysis Batch: 21519

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 21528

1 1 1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	1.60	1.06		ug/L		66	49 - 120
2-Methylnaphthalene	1.60	1.04		ug/L		65	44 - 120
Acenaphthene	1.60	1.11		ug/L		69	54 - 120
Acenaphthylene	1.60	1.11		ug/L		69	57 - 120
Anthracene	1.60	1.19		ug/L		74	66 - 120
Benzo[a]anthracene	1.60	1.21		ug/L		76	68 - 120
Benzo[a]pyrene	1.60	1.20		ug/L		75	70 - 120
Benzo[b]fluoranthene	1.60	1.22		ug/L		76	63 - 120
Benzo[g,h,i]perylene	1.60	1.13		ug/L		71	56 - 120
Benzo[k]fluoranthene	1.60	1.31		ug/L		82	67 - 120
Chrysene	1.60	1.32		ug/L		82	69 - 120
Dibenz(a,h)anthracene	1.60	1.11		ug/L		69	58 - 120
Fluoranthene	1.60	1.26		ug/L		79	64 - 120
Fluorene	1.60	1.11		ug/L		70	59 - 120
Indeno[1,2,3-cd]pyrene	1.60	1.11		ug/L		70	58 - 120
Naphthalene	1.60	1.04		ug/L		65	52 - 120
Phenanthrene	1.60	1.19		ug/L		74	57 - 120
Pyrene	1.60	1.26		ug/L		79	52 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 21528

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-21528/2-A Matrix: Water Analysis Batch: 21519

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	64		44 - 120
Nitrobenzene-d5	84		36 - 126
p-Terphenyl-d14	86		51 - 121

Lab Sample ID: LCSD 590-21528/3-A Matrix: Water

p-Terphenyl-d14

Analysis Batch: 21519									Prep E	Batch: 2	21528
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1-Methylnaphthalene			1.60	1.11		ug/L		69	49 - 120	4	35
2-Methylnaphthalene			1.60	1.06		ug/L		66	44 - 120	2	35
Acenaphthene			1.60	1.15		ug/L		72	54 - 120	3	30
Acenaphthylene			1.60	1.15		ug/L		72	57 - 120	3	30
Anthracene			1.60	1.34		ug/L		84	66 - 120	12	30
Benzo[a]anthracene			1.60	1.24		ug/L		78	68 - 120	3	30
Benzo[a]pyrene			1.60	1.32		ug/L		82	70 - 120	9	30
Benzo[b]fluoranthene			1.60	1.37		ug/L		85	63 - 120	12	30
Benzo[g,h,i]perylene			1.60	1.22		ug/L		76	56 ₋ 120	7	35
Benzo[k]fluoranthene			1.60	1.40		ug/L		87	67 - 120	7	30
Chrysene			1.60	1.35		ug/L		85	69 - 120	3	24
Dibenz(a,h)anthracene			1.60	1.16		ug/L		73	58 - 120	5	30
Fluoranthene			1.60	1.33		ug/L		83	64 - 120	5	30
Fluorene			1.60	1.17		ug/L		73	59 - 120	5	30
Indeno[1,2,3-cd]pyrene			1.60	1.17		ug/L		73	58 - 120	5	30
Naphthalene			1.60	1.07		ug/L		67	52 - 120	3	30
Phenanthrene			1.60	1.27		ug/L		79	57 - 120	6	30
Pyrene			1.60	1.39		ug/L		87	52 - 120	10	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	66		44 - 120								
Nitrobenzene-d5	85		36 - 126								

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

96

Lab Sample ID: MB 590-216 Matrix: Water Analysis Batch: 21628	26/1-A							le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24		mg/L		04/05/19 10:17	04/05/19 13:06	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40		mg/L		04/05/19 10:17	04/05/19 13:06	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150				04/05/19 10:17	04/05/19 13:06	1
n-Triacontane-d62	84		50 - 150				04/05/19 10:17	04/05/19 13:06	1

51 - 121

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-2 Matrix: Water								•	Lab Contro Prep Type:	Total/N/
Analysis Batch: 21628									Prep Bato	h: 2162
			Spike		LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)			1.60	1.31		mg/L		82	50 - 150	
(C10-C25) Residual Range Organics (RRO) (C25-C36)			1.60	1.50		mg/L		94	50 - 150	
(020-030)	1.00	1.00								
Surrogate	Recovery	LCS Qualifier	Limits							
o-Terphenyl	89	Quaimer	50 - 150							
n-Triacontane-d62	88		50 - 150 50 - 150							
	00		00-700							
Lab Sample ID: LCSD 590	-21626/3-A				C	Client Sa	ample	ID: Lab	Control San	nple Duj
Matrix: Water									Prep Type:	Total/N/
Analysis Batch: 21628									Prep Bato	
			Spike		LCSD				%Rec.	RPI
Analyte			Added		Qualifier	Unit	D	%Rec		PD Lim
Diesel Range Organics (DRO)			1.60	1.27		mg/L		79	50 - 150	3 2
(C10-C25) Residual Range Organics (RRO)			1.60	1.42		mg/L		89	50 ₋ 150	6 2
(C25-C36)									00 - 100	-
	LCSD	LCSD								
Surrogate	%Recovery	Qualifier	Limits							
o-Terphenyl	83		50 - 150							
n-Triacontane-d62	83		50 - 150							
)								
)								
Lab Sample ID: MB 580-29	98011/22-A								ple ID: Meth	
Matrix: Water							P	rep Тур	e: Total Rec	
Analysis Batch: 298231									Prep Batch	: 29801
	_	MB MB						_		
Analyte	Re	sult Qualifi			MDL Unit			repared	Analyzed	Dil Fa
Arsenic		ND	0.0010)	mg/L		04/0	4/19 14:09	04/05/19 11:4	0
Lab Sample ID: LCS 580-2	298011/23-A					Clie	ent Sar	nple ID:	Lab Contro	
Matrix: Water						- Chi			e: Total Rec	
Analysis Batch: 298231									Prep Batch	
· ····· , ··· · ·······················			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic			1.00	1.00		mg/L		100	80 - 120	
							_			. –
Lab Sample ID: LCSD 580	-298011/24-	Α			C	Client Sa			Control San	
Matrix: Water							P	гер Тур	e: Total Rec	
Analysis Batch: 298231									Prep Batch	· 29801

Analysis Batch: 298231							Prep Ba	atch: 29	98011
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.00	1.03		mg/L		103	80 - 120	3	20

5

Job ID: 590-10668-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-29822	4/22-A							Cli	ent Sam	ple ID: M	ethod	Blank
Matrix: Water									Prep Typ	e: Total	Recov	erable
Analysis Batch: 298325										Prep Ba	atch: 2	98224
	MB	MB										
Analyte	Result	Qualifier	RL		MDL (Jnit		DF	Prepared	Analy	zed	Dil Fac
Arsenic	ND		0.0010		r	ng/L		04/	08/19 17:43	04/09/19	14:18	1
Lab Sample ID: LCS 580-2982	24/23-A						Clie	nt Sa	mple ID:	Lab Cor	ntrol Sa	ample
Matrix: Water									Prep Typ	e: Total	Recov	erable
Analysis Batch: 298325										Prep Ba		
-			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits		
Arsenic			1.00	1.05			mg/L		105	80 - 120		
Lab Sample ID: LCSD 580-298	224/24-A					С	lient Sa	ample	D: Lab	Control	Sampl	e Dup
Matrix: Water										e: Total		
Analysis Batch: 298325										Prep Ba		
			Spike	LCSD	LCSD)				%Rec.		RPD
Analyte			Added	Result	Quali	fier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic			1.00	1.05			mg/L		105	80 - 120	0	20

5

Lab Sample ID: 590-10668-1

Matrix: Water

5 6

8 9

Client Sample ID: MW-14b Date Collected: 03/26/19 14:00 Date Received: 03/26/19 17:07

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Dil Factor	Initial Amount 43 mL	Final Amount 43 mL	Batch Number 21494	Prepared or Analyzed 03/27/19 21:57	Analyst MRS	Lab TAL SPK
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			246.5 mL	2 mL	21528	03/28/19 13:33	NMI	TAL SPK
Total/NA	Prep	3510C			246.5 mL	2 mL	21528	03/28/19 13:33	NMI	TAL SPK
Total/NA	Analysis	8270D SIM		1			21519	03/28/19 15:27	NMI	TAL SPK
Total/NA	Prep	3510C			252.3 mL	2 mL	21626	04/05/19 10:17	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			21628	04/05/19 16:42	NMI	TAL SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	298224	04/08/19 17:43	T1H	TAL SEA
Total Recoverable	Analysis	6020B		5	50 mL	50 mL	298325	04/09/19 15:50	FCW	TAL SEA

Client Sample ID: MW-13b Date Collected: 03/26/19 14:45 Date Received: 03/26/19 17:07

Lab Sample ID: 590-10668-2

Matrix: Water

Prep Type Total/NA Total/NA Total/NA	Batch Type Analysis Prep Analysis	Batch Method 8260C 3510C 8270D SIM	Run	Dil Factor 1	Initial Amount 43 mL 247.5 mL	Final Amount 43 mL 2 mL	Batch Number 21494 21528 21519	Prepared or Analyzed 03/27/19 22:18 03/28/19 13:33 03/28/19 15:54	NMI	Lab TAL SPK TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3510C NWTPH-Dx		1	265.2 mL	2 mL	21626 21628	04/05/19 10:17 04/05/19 17:01	NMI NMI	TAL SPK TAL SPK
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020B		5	50 mL 50 mL	50 mL 50 mL	298011 298231	04/04/19 14:09 04/05/19 13:11	JKM FCW	TAL SEA TAL SEA

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Spokane Environmental Solutions LLC Project/Site: SIA Burn Pits Job ID: 590-10668-1

5

9

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	gram	EPA Region	Identification	Number	Expiration Date
Washington	Stat	e Program	10	C569		01-06-20
The following on	alutaa ara inaludad in thi	roport but the leberator	via not cortified by th	o governing outh	ority Thic	list may include one
U U	alytes are included in this not offer certification.	report, but the laborator	y is not certified by th	ne governing autho	ority. This I	list may include ana

Laboratory: Eurofins TestAmerica, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-20
ANAB	DoD / DOE		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-22
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-20

Method Summary

Client: Spokane Environmental Solutions LLC Project/Site: SIA Burn Pits

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
6020B	Metals (ICP/MS)	SW846	TAL SEA
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SEA
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL SPK
5030C	Purge and Trap	SW846	TAL SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SEA = Eurofins TestAmerica, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290		Chain	of Cust	ody	Rec	orc	I									the second second second	ENVIRONMENTAL TESTING
Client Information	Samples				mington	Rand	lee E				Can	ter Trank	nọ No/s	e.		COC No: 590-4399-142	.1
Sary Panther	Phone Soq - C	ev.	GPAJ	E	Mail: andee.al				ericain	C 000						Page 1 of 1	
ompany.	2010	191	3010	1.	1	in gio	1.62.14	e er taki i i			Deserve				-	Job =	
ddress:	Due Date Request	ed:			1	1	1	1	Ana	ilysis	Reque	sted			1	Preservation Co	odes:
8810 E. Boone Avenue Suite #101	TAT Requested (d			-	-11											A - HCL B - NROH	M - Hexane
pokane										11		11				C - Zn Acetate	Q - AsNaO2
ate, Zip. A, 99202	57	D			80				arbons							D - Nitric Acid E - NaHSO4	P - Na2O45 0 - Na2S03 R - Na2S203
ane:	P0 # Advance Paym	ant Require		-					ă							F - MeDH G - Amchiot	S-H2504
9-954-5090(Tel)	WO #:	ent Require	a		ample (Yes or No)				Aromatic Hydi							H - Ascorbic Acid I - Ice	U - Acetone
ry@spokaneenvironmental.com	Project#:				65 01	NO			omati						Brs	J - DI Water K - EDTA	V - MCAA W - pH 4-5
oject Name.	59001518				E e	0 58	and RRO		IC Arc				1		ntair	L - EDA	Z - other (specify)
SIA BURN P.ts	S\$OW#				amp	100	0 and		yeyel						of con	Other:	
	Samula Data	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water S=solid, O=waste/of	old Filtered	Fortorn MSM	NWTPH_DX - DRO	0260C - BTEX	8270D_SIM - Polycyclic						Total Number	Special	nstructions/Note:
ample Identification	Sample Date	1000	Preservati		1		A		N						X	opyciai	isi denonsitione.
MW-14 b	32619	1400	6	Water													
Mur 13h	11	1445	G	Water	11											-	
mbl- Rh		1530	6	Water	T	1	1										
MW-135 MW-85 NW-7	×	1615	o	Water	++	+											
100	- CA	1012		Water	++	+	1			1 1	1	11	1				
		-			++	-	1		- 11							-	
					++	+	-		-								
					++	+	+		- 11								
And the second					++	-	-		590	-10668	Chain	of Cust	ody				
and the second				_	++	-	-		-	++			-	F 1	-		
						_				-	-		-		-		
				_					1						100		
ossible Hazard Identification			-		S	ampl	e Dis	posa	I (A fe Client	e may l	Dispo	ssed if	sample	es are re	etain	ed longer than nive For	1 month) Months
Non-Hazard Flammable Skin Irritant eliverable Requested: 1, 11, 111, 1V, Other (specify)	Poison B Unki	nown	Radiological		IS					Require		isal By I	Lab		Arch	live For	Months
a la la cara de la cara		Data		_	Time		-		2			Methor	of Shipir	ent:	-		
npty Kit Relinquished by:	Date/Time:	Date:	- 10	mpany	-	IRec	ewed	by:	T		1	1		-			Company
1 min x have	3-26 19	180	1	Subality.	5	V	m	de	it	mn	ato)	3	20	119	1707	Company SPO
Inediated by:	Date/Time:		C	ompany		Heð	eived I	by:	-	()		Date	ime:			Company
singuished by:	Date/Time		c	ompany		Reo	eived I	by:					Date	Time:			Company
Custody Seals Intact: Custody Seal No.						Goo	lec Ter	mperan	ure(a) °C	and Othe	r Remark		-	- 1 -			
Δ Yes Δ No					7 of 2	1	_			-		6	1.(0°(1	Floor	Ver: 01/16/20/4/10/

TestAmerica Spokane

TostAmorica

TestAmerica Spokane
11922 East 1st Ave
Spokane, WA 99206
Phone (509) 924-9200 Fax (509) 9

TestAmerica Spokane 11922 East 1st Ave Spokane, WA 99206 Phone (509) 924-9200 Fax (509) 924-9290		Chain	of Cu	stody I	Re	con	d						WMR		ľ	17/2 - 17/2	
Client Information (Sub Contract Lab)	Sampler:				PM:	n, Rar	viee F		-		Car	tier Track	ting No(s)	k.		COC No: 590-4214.1	
Client Contact: Shipping/Receiving	Phone:			E-M	laŭ l				3.4.1.1			te of Ong				Page:	_
Company				Iran	Act	reddatio	ins Req	stamen	e note):	mos	IWa	ashingto	on.		-	Page 1 of 1	
TestAmerica Laboratories, Inc. Address:	Due Date Request	ind:		_	Sta	ate Pro	gram	- Washi	ington	-	_					590-10668-1	
5755 8th Street East,	4/5/2019			_					Analy	sis R	eque	sted				Preservation C	
city: Tacoma	TAT Requested (d	аув):	-005				T		11.1	T	T	TT				A - HCL B - NaOH	M - Hexane N - None
State, Zip						- /			1. 6						1	C - Zn Acetate D - Nithe Acid	0 - ÁsNaO2 P - Na2O4S
NA. 98424	PO #:				-0											E - NaHSO4 F - MeOH	Q - Na25O3 R - Na252O3
53-922-2310(Tel) 253-922-5047(Fax)		_			2	heil									1	G - Amchlor H - Ascarbic Acid	S - H2SO4
maiL	WO #:				N IS	5									-	I - Ice J - Di Water	U - Acetone V - MCAA
Project Name:	Project #				8	er N	1								STIBITS	K - EDTA	W-pH4-5
SIA Burn Pits	59001518 SSOW#:	_	_		-8	Yos									contain	and the second se	Z - other (specify)
					Sem	00									ol co	Other:	
			Sample	Matrix	8	Purform MS/MSD (Yes or No) 60208/30054 (MOD) Arsenic									104-0		
		4.1.11	Туре	(Wewater, Besolid,	E.	1100									E.		
ample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	Orwastofoll. BT=Tiboue, AnAls	3	Purform 60208/300									Total Numbe	Constal	
	\sim	$>\!$		tion Code:	X	Ž °		1.57		-				-	N	Special	Instructions/Note:
W-14b (590-10668-1)	3/26/19	14:00	11.000	Water	Π	X									T		
W-13b (590-10668-2)	3/26/19	Pacific 14:45		Water	H	x	+ +	-	+ +		+		+	-	-		
	5-20/19	Pacific		water	44	^			+	-			+ +	-	1		
		1		1	11	4		_		_					-		
			1.1					11						1.0	1		
					П						1				1		
					Ħ	1	11	-	+ +		1	-	++		100		
					H	-			+	-	-		++				
					11	-						1		1.1	1		
										11				11	1-3		
					П				T	in he						1.0	10-20-
Ne: Since laboratory accreditations are subject to change, TestAmerica rrently maintain accreditation in the State of Origin listed above for ana boratories, Inc. attention immediately. If all requested accreditations a											This sa be prov	mple ship /ided. Ar	ument is fo	orwarded 5 to accre	under d latio	chain-of-custody. I n status should be l	f the laboratory does not brought to TestAmerica
ossible Hazard Identification			1.2.2.1.1.		Is	ample	Disp	osal (A	fee m	av he :	30226	cort if a	amples	3re re	taina	d longer than	(month)
nconfirmed	10 P 10 P 10				ſ		Return	To Clie	ot		Dispo	sal By L	ab		Archi	ve For	Months
eliverable Requested: I. II. III, IV. Other (specify)	Primary Delivera	ble Rank: 2	1		s	pecial	Instru	ctions/C	C Rec	uireme	ents:				a or h	101.04	
npty Kit Relinquished by:	1	Date:		-	Time	a:	_	-	-		-	Method c	d Shipmer	11:			
Englished by	Date/Time:		in a la	Company	-	_	ived by	71.	-	T	_	1.000	-	_	-	- E . 12	Commerce
Maria Mode	312.811	4 (0	1:54	TASP	C			Jun	mt	lin	-			29.1	9	0930	TASez
mituomet by.	Date/Time:		la la	Company		Rece	ived by:	1					Date/Ti	me			Company
singuisbed by:	Date/Time:			Company		Rece	ived by				-	-	Date/Ta	me:	-		Company
Custody Seals Intact: Custody Seal No.:	-					-	-		-					11.	_		122
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				- 1		Cook	er Temp	erature(s) "C and	Other Re	emarks:	4	=-0	71		1	Ver: 01/16/2019 4/1

Login Sample Receipt Checklist

Client: Spokane Environmental Solutions LLC

Login Number: 10668 List Number: 1 Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Job Number: 590-10668-1

List Source: Eurofins TestAmerica, Spokane

Login Sample Receipt Checklist

Login Number: 10668	List Source: Eurofins TestAmerica, Seattle	
List Number: 2	List Creation: 03/30/19 09:17 AM	E
Creator: Hobbs, Kenneth F		

Login Sample Recei	pt Check	list	2
Client: Spokane Environmental Solutions LLC		Job Number: 590-10668-1	3
Login Number: 10668 List Number: 2 Greater: Habba Kannath E		List Source: Eurofins TestAmerica, Seattle List Creation: 03/30/19 09:17 AM	4 5
Creator: Hobbs, Kenneth F Question	Answer	Comment	6
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td>7</td>	N/A		7
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		8
The cooler or samples do not appear to have been compromised or tampered with.	True		9
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		10
Cooler Temperature is recorded.	True	IR5=-0.2/-0.1	
COC is present.	True		11
COC is filled out in ink and legible.	True		40
COC is filled out with all pertinent information.	True		12
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

SITE ASSESSMENT REPORT

Spokane International Airport

Spokane, WA

APPENDIX C

Response to Comments Received from Ecology on Draft Site Assessment Report

Spokane International Airport Spokane, WA

ECOLOGY COMMENT NO.	DOCUMENT SECTION NO.	ECOLOGY COMMENT	RESPONSE
Main Body	– Revised Te	xt Comments	
1	2.2	Please correct the formatting errors.	Corrected.
2	2.5	Please complete the final sentence.	The complete sentence has been revised.
3	4.1.1	Please note that not all airports transitioned to C6 foam.	Sentence has been revised.
4	4.2.2	Page 15, first full paragraph: Please correct the volume for the 1,500- gallon truck.	Corrected.
5	4.2.3	The text indicates "These fire trainings were not led by SIA nor was SIA ARFF equipment used." Ecology finds it difficult to accept this assertion when SIA's institutional knowledge only goes back to 1999.	The institutional knowledge retained by SIA is not strictly limited to a finite date but rather to what is documented or reliably recalled by former SIA personnel. In this instance, the former SIA Fire Chief was able to recall information he received upon starting his employment at SIA pertaining to fire training exercises held in the Joint Training Area.
6	6.2	Figure 6.1: Ecology is not aware that gas stations are potential sources of PFAS. The ITRC guidance indicates that uses of PFAS associated with the oil and gas industry are related to well production and drilling, neither of which is occurring at gas stations in the vicinity of the Spokane Airport.	The gas stations (Flying J, Harper Conoco, and Hilltop Conoco & Grocery) have all been removed and Figure 6.1 and Table 6.1 have been updated accordingly.
7	7.2	Please correct the references that are switched in Appendix B2, with AECOM 2017b first and AECOM 2017a following (mislabeled).	Corrected.
8	10.0	If the fuel farm has a foam distribution system, the area should be included in the evaluation.	The fuel farm does not have a foam distribution system. While the fuel farm has the piping infrastructure in place for a foam distribution system, there is no foam reserve in place, nor have there been any past events where foam been used in the system.

Notes:

Table summarizes response to Ecology comments issued 30 July 2024, for the Draft Site Assessment Report dated 12 July 2024.
 Document Section Number = Section number of the Draft Site Assessment Report submitted on 12 July 2024.

Spokane International Airport Spokane, WA

ECOLOGY COMMENT NO.	DOCUMENT SECTION NO.	ECOLOGY COMMENT	RESPONSE
June 28, 20	24 Comments	s from Ecology	
1	Comment #31	The comment was not addressed. Please include the complete ERIS environmental data package as an appendix to the report or indicate that the complete ERIS environmental data package will be included in the draft Remedial Investigation Work Plan.	The ERIS package will be included in the draft Remedial Investigation Work Plan.
2	Comment #32	The comment was not addressed. However, Ecology is amenable to including a preliminary assessment of groundwater flow direction in the draft Preliminary PFAS Investigation Work Plan.	We appreciate Ecology's consideration on this topic - flow directions will be presented in the Preliminary PFAS Investigation Work Plan.
3	Comment #33	The comment was not addressed. The data gaps listed in section 3.4 are listed as "the foundation for building the Preliminary PFAS Investigation Workplan." Please redefine the purpose of this section or include nature and extent of contamination as a data gap.	We have revised to indicate that the listed data gaps are specific lines of inquiry. An additional sentence has been added to reflect that this information goes to support both the Preliminary PFAS Investigation Work Plan and the Remedial Investigation Work Plan to characterize the nature and extent of any PFAS contamination on the Site.

Notes:

Table summarizes response to Ecology comments issued 30 July 2024, for the Draft Site Assessment Report dated 12 July 2024.
 Document Section Number = Section number of the Draft Site Assessment Report submitted on 12 July 2024.

Spokane International Airport Spokane, WA

ECOLOGY COMMENT NO.	DOCUMENT SECTION NO.	ECOLOGY COMMENT	RESPONSE
4	Comment #55	Ecology recognizes that all information regarding the stormwater system on site may not be available at this time; a comprehensive discussion of this topic will be expected in the draft Remedial Investigation Work Plan. Reports in Appendix B indicate that deicer is considered a likely source of PFAS impacts to groundwater from Alpha Outfall, but this is not discussed in Section 5.1. Please discuss the components of the airport's deicer or indicate further discussion of deicer will be included in the draft Remedial Investigation Work Plan.	The mention of deicer fluid in Appendix B.2 (AECOM, 2017a) states that, "these chemicals include aviation-related products such as lubricants, hydraulic oils, detergents, firefighting agents and deicing compounds" (page 2 of the report). The statement provides no reference for the assertion of PFAS in deicer fluids, either for general use in aviation or, specifically, as a component in the deicing fluid used by SIA. There were past assertions that aircraft deicing fluids contained PFAS however several reports have shown that aircraft deicer fluids do not contain PFAS: •In 2012, the U.S. EPA identified surfactants used in aircraft deicing and anti-icing fluid (ADE) none of which are fluorinated, and hence not PEAS
			source of PFAS.

Table summarizes response to Ecology comments issued 30 July 2024, for the Draft Site Assessment Report dated 12 July 2024.
 Document Section Number = Section number of the Draft Site Assessment Report submitted on 12 July 2024.

Notes:

Spokane International Airport Spokane, WA

ECOLOGY COMMENT NO.	DOCUMENT SECTION NO.	ECOLOGY COMMENT	RESPONSE
5	Comment #57	The reports in Appendix B indicate that groundwater flow direction at the airport has been studied to support the Stormwater Discharge Permit. Please provide a short, preliminary description of groundwater flow direction in this report.	Information on groundwater flow direction has been added to Section 5.1 for the two areas studied: Land Treatment Area and the Stormwater Recovery Area.
Appendix A			
1	3	Section 3 and throughout Appendix A: The word "hydrologically" typically refers to surface water. Presumably this should say "hydrogeologically," when the section is discussing hydrogeology. Please revise.	Corrected.
2	3.1.1	More than 350 lava flows comprise the CRBG (rather than "the CBRG comprises more than 350 lava flows"). Please revise.	Revised.
3	Comment #19	This comment was not addressed. Information on the paleochannels is included in existing references and needs to be discussed along with the rest of the geologic context.	This section has been expanded upon to include information pertaining to paleochannels in the West Plains including the addition of approximated paleochannel locations on Figure 1. Additionally, subsections describing the two paleochannels nearest to the Site (to the west and to the northeast) have been added. The paleochannel to the west of the Site has been studied more extensively and information structure, groundwater flow direction and hydraulic conductivity was added. The paleochannel to the northeast of the Site has not been studied as extensively, so existing information on structure and potential unconfined aquifer thickness was added but additional information on this paleochannel is needed to understand the hydrogeology in the area.
4	Comment #26	This comment was not addressed. Please put the geochemical dating of groundwater in the area within context, as has been discussed in literature.	This section has been expanded upon to include the conclusions of both NLW, 2012 and NLW, 2014. These studies included isotope age dating of select wells in the West Plains and Lower Hangman Creek watershed and concluded that while basalt hosted aquifer water is significantly older than paleochannel water, there is some influence of 'younger' water mixing at depth.

Notes:

Table summarizes response to Ecology comments issued 30 July 2024, for the Draft Site Assessment Report dated 12 July 2024.
 Document Section Number = Section number of the Draft Site Assessment Report submitted on 12 July 2024.